Fe@Si/S-34催化剂的制备及其合成气制烯烃性能
收稿日期: 2022-07-23
网络出版日期: 2022-12-21
基金资助
国家自然科学基金(21908174); 国家自然科学基金(22178283); 陕西省自然科学基础研究计划面上项目(2020JM-517); 西安科技大学2021年度优秀青年科学基金资助
Preparation of Fe@Si/S-34 Catalysts and Its Catalytic Performance for Syngas to Olefins
Received date: 2022-07-23
Online published: 2022-12-21
Supported by
National Natural Science Foundation of China(21908174); National Natural Science Foundation of China(22178283); Natural Science Basic Research Plan in Shaanxi Province of China(2020JM-517); Excellent Youth Science Foundation in Xi'an University of Science and Technology(2021)
合成气经费托合成反应直接制低碳烯烃是极具开发前景的合成气直接制烯烃技术, 其关键是通过产物分布的调控提高低碳烯烃的选择性. 本工作将疏水性Fe基费托合成催化剂与SAPO-34分子筛进行复合, 制备了一系列不同SAPO-34分子筛含量的Fe@Si/S-34复合催化剂. 采用X射线衍射、扫描电子显微镜、N2吸附-脱附、NH3程序升温脱附和水接触角测量仪考察了SAPO-34分子筛含量对催化剂物化性质的影响. 结果表明SAPO-34分子筛的含量对催化剂的表面积、孔体积、酸性和疏水性具有显著的影响. 随着SAPO-34分子筛含量的增加, 催化剂的比表面积和总孔体积增加, 弱酸和中强酸位点增加, 疏水性减弱. 催化性能评价结果表明, Fe@Si/S-34复合催化剂明显降低了C5+产物选择性, 增加了C2~C4烃类的选择性, 适量的SAPO-34分子筛能够显著提高C2~C4烯烃的选择性. 本研究将Fe@Si催化剂的疏水性和SAPO-34分子筛对C5+烃的裂解活性耦合在一起, 在抑制水煤气变换(WGS)反应, 降低CO2选择性的同时获得较高的C2~C4烯烃选择性, 为费托合成制烯烃催化剂的研制提供了一条新的策略.
关键词: 合成气; 低碳烯烃; 费托合成; 疏水催化剂; SAPO-34分子筛
陈治平 , 孟永乐 , 卢静 , 周文武 , 杨志远 , 周安宁 . Fe@Si/S-34催化剂的制备及其合成气制烯烃性能[J]. 化学学报, 2023 , 81(1) : 14 -19 . DOI: 10.6023/A22070329
The direct synthesis of light olefins from syngas via Fischer-Tropsch synthesis reaction is a promising technology for direct synthesis of olefins from syngas. The key is to improve the selectivity of light olefins through the regulation of product distribution. In this work, the hydrophobic Fe@Si catalyst was prepared by room temperature solid state method- Stöber-silylation method, and then the catalyst was combined with SAPO-34 molecular sieves with different contents to prepare Fe@Si/S-34 composite catalysts. The effects of SAPO-34 molecular sieve content on the physicochemical properties of the catalysts were investigated by X-ray diffraction, scanning electron microscopy, N2 adsorption-desorption, NH3 temperature programmed desorption and water contact angle measurement. The results showed that the content of SAPO-34 molecular sieve has significant influence on the surface area, pore volume, acidity and hydrophobicity of the catalysts. With the increase of SAPO-34 molecular sieve content, the specific surface area and total pore volume of the catalyst increased, the weak acid and medium-strong acid sites increased, and the hydrophobicity weakened. The catalytic performance evaluation results showed that the Fe@Si/S-34 composite catalyst decomposed C5+ hydrocarbons into light hydrocarbons, significantly reduced the selectivity of C5+ products and increased the selectivity of C2~C4 hydrocarbons. Appropriate SAPO-34 molecular sieve could significantly improve the selectivity of C2~C4 olefins. When the mass ratio of Fe@Si catalyst to SAPO-34 is 2, the C2~C4 olefin selectivity of Fe@Si/S-34 catalyst is the highest, the conversion of CO is 80.0%, the selectivity of CO2 in the product is 8.9%, and the selectivity of C2~C4 olefins is 31.1%. In this study, the hydrophobicity of Fe@Si catalyst and the cracking activity of SAPO-34 molecular sieve for C5+ hydrocarbon were coupled together to inhibit the water-gas shift (WGS) reaction, reduce the CO2 selectivity and obtain higher C2~C4 olefin selectivity, which provided a new strategy for the development of catalysts for Fischer-Tropsch synthesis to olefins.
[1] | Zhao, S.; Li, H.; Wang, B.; Yang, X.; Peng, Y.; Du, H.; Zhang, Y.; Han, D.; Li, Z. Fuel 2022, 321, 124124. |
[2] | Qi, Z.; Gao, F.; Zhou, C.; Zeng, Y.; Wu, Q.; Yang, L.; Wang, X.; Hu, Z. Acta Chim. Sinica 2022, 80, 1100. (in Chinese) |
[2] | ( 齐志豪, 高福杰, 周常楷, 曾誉, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2022, 80, 1100.) |
[3] | Liu, Z.; Ni, Y.; Hu, Z.; Fu, Y.; Fang, X.; Jiang, Q.; Chen, Z.; Zhu, W.; Liu, Z. Chinese J. Catal. 2022, 43, 877. |
[4] | Chen, Z.; Zhang, Z.; Zhou, W.; Yang, Z.; Zhou, A. J. Fuel Chem. Technol. 2022, 50, 1381. (in Chinese) |
[4] | ( 陈治平, 张智, 周文武, 杨志远, 周安宁, 燃料化学学报, 2022, 50, 1381.) |
[5] | Sun, D.; Sun, B.; Pei, Y.; Yan, S.; Fan, K.; Qiao, M.; Zhang, X.; Zong, B. Acta Chim. Sinica 2021, 79, 771. (in Chinese) |
[5] | ( 孙冬, 孙博, 裴燕, 闫世润, 范康年, 乔明华, 张晓昕, 宗保宁, 化学学报, 2021, 79, 771.) |
[6] | Cheng, K.; Kang, J.; King, D.; Subramanian, V.; Zhou, C.; Zhang, Q.; Wang, Y. Adv. Catal. 2017, 60, 125. |
[7] | Li, Y.; Zhang, X.; Wei, M. Chinese J. Catal. 2018, 39, 1329. |
[8] | Hondo, E.; Lu, P.; Zhang, P.; Li, J.; Tsubaki, N. J. Jpn. Petrol. Inst. 2020, 63, 239. |
[9] | Zhai, P.; Li, Y.; Wang, M.; Liu, J.; Cao, Z.; Zhang, J.; Xu, Y.; Liu, X.; Li, Y.; Zhu, Q.; Xiao, D.; Wen, X.; Ma, D. Chem 2021, 7, 3027. |
[10] | Wang, D.; Chen, B.; Duan, X.; Chen, D.; Zhou, X. J. Energy Chem. 2016, 25, 911. |
[11] | Masudi, A.; Jusoh, N.; Muraza, O. Catal. Sci. Technol. 2020, 10, 1582. |
[12] | Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Li, M.; Miao, S.; Li, J.; Zhu, Y.; Xiao, D.; He, T.; Yang, J.; Qi, F.; Fu, Q.; Bao, X. Science 2016, 351, 1065. |
[13] | Liu, Z. Acta Phys. Chim. Sin. 2016, 32, 803. (in Chinese) |
[13] | ( 刘忠范, 物理化学学报, 2016, 32, 803.) |
[14] | Liu, J.; Song, Y.; Guo, X.; Song, C.; Guo, X. Chinese J. Catal. 2022, 43, 731. |
[15] | Yang, X.; Guo, X.; Zhang, C.; Wang, X.; Yang, Y.; Li, Y. Acta Chim. Sinica 2017, 75, 360. (in Chinese) |
[15] | ( 杨向平, 郭晓雪, 张成华, 王小萍, 杨勇, 李永旺, 化学学报, 2017, 75, 360.) |
[16] | Fellenz, N.; Bengoa, J.; Cagnoli, M.; Marchetti, S. J. Porous Mat. 2017, 24, 1025. |
[17] | Yu, X.; Zhang, J.; Wang, X.; Ma, Q.; Gao, X.; Xia, H.; Lai, X.; Fan, S.; Zhao, T. Appl. Catal. B-Environ. 2018, 232, 420. |
[18] | Xu, Y.; Li, X.; Gao, J.; Wang, J.; Ma, G.; Wen, X.; Yang, Y.; Li, Y.; Ding, M. Science 2021, 371, 610. |
[19] | Karre, A.; Dadyburjor, D. Chem. Eng. Commun. 2022, 209, 967. |
[20] | Cai, Z. M.S. Thesis, Zhejiang university, Hangzhou, 2017. (in Chinese) |
[20] | ( 蔡正才, 硕士论文, 浙江大学, 杭州, 2017.) |
[21] | Qiu, T.; Wang, L.; Lv, S.; Sun, B.; Zhang, Y.; Liu, Z.; Yang, W.; Li, J. Fuel 2017, 203, 811. |
[22] | Di, Z.; Zhao, T.; Feng, X.; Luo, M. Catal. Lett. 2019, 149, 441. |
[23] | Cheng, K.; Gu, B.; Liu, X.; Kang, J.; Zhang, Q.; Wang, Y. Angew. Chem. Int. Ed. 2016, 55, 4725. |
[24] | Liu, X.; Zhou, W.; Yang, Y.; Cheng, K.; Kang, J.; Zhang, L.; Zhang, G.; Min, X.; Zhang, Q.; Wang, Y. Chem. Sci. 2018, 9, 4708. |
[25] | Zhang, S.; Wen, Z.; Yang, L.; Duan, C.; Lu, X.; Song, Y.; Ge, Q.; Fang, Y. Micropor. Mesopor. Mater. 2019, 274, 220. |
[26] | Yang, M.; Tian, P.; Wang, C.; Yuan, Y.; Yang, Y.; Xu, S.; He, Y.; Liu, Z. ChemComm 2014, 50, 1845. |
[27] | Tong, M.; Chizema, L.; Chang, X.; Hondo, E.; Dai, L.; Zeng, Y.; Zeng, C.; Ahmad, H.; Yang, R.; Lu, P. Micropor. Mesopor. Mater. 2021, 320, 111105. |
[28] | Shi, L.; Li, D.; Hou, B.; Sun, Y. Chinese J. Catal. 2007, 28, 999. |
[29] | Vatanpour, V.; Esmaeili, M.; Chahvari, S.; Masteri, M. J. Environ. Chem. Eng. 2021, 9, 105900. |
[30] | Junaidi, M.; Leo, C.; Ahmad, A.; Ahmad, N. Micropor. Mesopor. Mater. 2015, 206, 23. |
[31] | Hou, Y. M.S. Thesis, Shaanxi Normal University, Xi'an, 2020. (in Chinese) |
[31] | ( 候屹峰, 硕士论文, 陕西师范大学, 西安, 2020.) |
[32] | Wang, H. Ph.D. Dissertation, Tianjin university, Tianjin, 2019. (in Chinese) |
[32] | ( 王洪宇, 博士论文, 天津大学, 天津, 2019.) |
[33] | Tong, A.; Dan, D.; Yi, C. Chem. Res. Chin. Univ. 2017, 33, 672. |
[34] | Li, J.; Pan, X.; Bao, X. Chinese J. Catal. 2015, 36, 1131. |
[35] | Tan, L.; Wang, F.; Zhang, P.; Suzuki, Y.; Wu, Y.; Chen, J.; Yang, G.; Tsubaki, N. Chem. Sci. 2020, 11, 4097. |
/
〈 |
|
〉 |