研究论文

基于P掺杂TiO2/C纳米管负极的高性能锂离子电容器

  • 张国强 ,
  • 霍京浩 ,
  • 王鑫 ,
  • 郭守武
展开
  • a 陕西科技大学 材料科学与工程学院 西安 710021
    b 上海交通大学 电子信息与电气工程学院 上海 200240

收稿日期: 2022-11-10

  网络出版日期: 2022-12-21

基金资助

项目受陕西科技大学自然科学基金(2016BJ-49); 陕西省自然科学基金(2020JM-505)

P-doped TiO2/C Nanotubes as Anodes for High-performance Li-ion Capacitors

  • Guoqiang Zhang ,
  • Jinghao Huo ,
  • Xin Wang ,
  • Shouwu Guo
Expand
  • a School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021
    b School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240

Received date: 2022-11-10

  Online published: 2022-12-21

Supported by

Natural Science Foundation of Shaanxi University of Science and Technology(2016BJ-49); Natural Science Foundation of Shaanxi Province(2020JM-505)

摘要

以磷酸二氢钠(NaH2PO4)为磷源, 通过溶剂热法制备了P掺杂的TiO2/C (P-TiO2/C)纳米管以改善TiO2的储锂性能. 电化学测试表明: P-TiO2/C负极具有高的比容量(在0.1 A•g-1的电流密度下达到335 mAh•g-1)、优异的倍率性能(在2.0 A•g-1的电流密度下为92 mAh•g-1)及循环性能(在1.0 A•g-1的电流密度下经过1000次循环后放电比容量仍维持在135 mAh•g-1). 并且, P-TiO2/C在2 mV•s-1时的赝电容贡献约为96%. 由P-TiO2/C负极和活性炭正极组装的锂离子电容器在250 W•kg-1的功率密度下能量密度能够达到74.7 Wh•kg-1. 此外, 该锂离子电容器在10000次循环后比电容保持率约为43%. 此外, 该器件在1.0 A•g-1下循环10000次后充满电仍可点亮18只红色的LED灯组成的“LIC”字样. 该工作为高性能锂离子电容器TiO2负极材料的设计提供了思路.

本文引用格式

张国强 , 霍京浩 , 王鑫 , 郭守武 . 基于P掺杂TiO2/C纳米管负极的高性能锂离子电容器[J]. 化学学报, 2023 , 81(1) : 6 -13 . DOI: 10.6023/A22110456

Abstract

As an anode material for Li-ion capacitors (LICs), TiO2 exhibits pseudocapacitive behavior, low sodium storage potential and small structural changes in lithium storage process. However, poor conductivity and slow ion diffusion lead to sluggish lithium storage kinetics. Using sodium dihydrogen phosphate (NaH2PO4) as a phosphorus source, P-doped TiO2/C (P-TiO2/C) nanotubes are prepared by a simple solvothermal method to improve the lithium storage performance of TiO2. The P-TiO2/C nanotubes composed of nanosheets grown vertically on the surface can provide effective contact areas between electrolyte and active materials. And the C and P in P-TiO2/C are derived from the carbonization of alcohols and decomposition of NaH2PO4. P-doping easily causes P—O—Ti bond formed in TiO2 by P5+ replacing part of Ti4+, which can effectively improve the conductivity of TiO2. Electrochemical tests show that the P-TiO2/C anode for Li-ion batteries exhibits a high specific capacity (335 mAh•g-1 at a current density of 0.1 A•g-1), excellent rate capability (92 mAh•g-1 at a current density of 2.0 A•g-1) and long cycle performance (135 mAh•g-1 at a current density of 1.0 A•g-1 after 1000 cycles). In addition, the pseudocapacitive contribution of P-TiO2/C anode is about 96% at a scan rate of 2 mV•s-1. The superior lithium storage performance of P-TiO2/C nanotubes is derived from the P-doping in TiO2, which can change the electron structure of TiO2, which facilitates the electrons transport and lithium diffusion kinetics. The LICs assembled by P-TiO2/C anodes and activated carbon cathodes have a high energy density of 74.7 Wh•kg-1 at a power density of 250 W•kg-1, which are higher than some LICs based on titanic-based compound anodes. And the capacity retention of the LICs is about 43% after 10000 cycles at a current density of 1.0 A•g-1. In addition, after 10000 cycles test, a fully charged LICs can still light up the “LIC” model composed of 18 red LED lights. This work provides an idea for the design of TiO2 anode materials for high-performance LICs.

参考文献

[1]
Zhang, Y. X.; Wu, B. R.; Mu, G.; Ma, C. W.; Mu, D. B.; Wu, F. J. Energy Chem. 2022, 64, 615.
[2]
Bi, W. C.; Zhang, L. F.; Chen, J.; Tian, R. X.; Huang, H.; Yao, M. Acta Chim. Sinica 2022, 80, 756. (in Chinese)
[2]
( 毕文超, 张琳锋, 陈健, 田瑞雪, 黄昊, 姚曼, 化学学报, 2022, 80, 756.)
[3]
Zhang, Q. L.; Han, S. P.; Tian, F.; Feng, Z. Y.; Xi, B. J.; Xiong, S. L.; Qian, Y. T. Chinese J. Chem. 2021, 39, 1233.
[4]
Forouzandeh, P.; Ganguly, P.; Dahiya, R.; Pillai, S. C. J. Power Sources 2022, 519, 230744.
[5]
Liang, J. X.; Wang, D. W. Adv. Energy Mater. 2022, 12, 2200920.
[6]
Yang, S. Y.; Li, R. Z.; Nie, Z. T.; Zhang, H. J.; Zhang, Y.; Zhu, J. X. Inorg. Chem. Front. 2022, 9, 5579.
[7]
Liu, J. W.; Yue, M.; Wang, S. Q.; Zhao, Y. F.; Zhang, J. J. Adv. Funct. Mater. 2022, 32, 2107769.
[8]
Zhao, J.; Gong, J. W.; Li, Y. J.; Cheng, K.; Ye, K.; Zhu, K.; Yan, J.; Cao, D. X.; Wang, G. L. Acta Chim. Sinica 2018, 76, 107. (in Chinese)
[8]
( 赵婧, 龚俊伟, 李一举, 程魁, 叶克, 朱凯, 闫俊, 曹殿学, 王贵领, 化学学报, 2018, 76, 107.)
[9]
Mohanadas, D.; Sulaiman, Y. J. Power Sources 2022, 523, 231029.
[10]
Li, T.; Zhang, J. J.; Li, C. X.; Zhao, H.; Zhang, J.; Qian, Z.; Yin, L. W.; Wang, R. T. Sci. China Mater. 2022, 65, 2363.
[11]
Li, S. N.; Xu, Y. N.; Liu, W. H.; Zhang, X. D.; Ma, Y. B.; Peng, Q. F.; Zhang, X.; Sun, X. Z.; Wang, K.; Ma, Y. W. Green Energy Environ. 2022. https://doi.org/10.1016/j.gee.2022.10.006.
[12]
Wang, H. W.; Guan, C.; Wang, X. F.; Fan, H. J. Small 2015, 11, 1470.
[13]
Liu, Y.; Ding, C. F.; Yan, X. D.; Xie, P. T.; Xu, B. Q.; Chen, L. L.; Liu, Y. C.; Liu, C. Z.; Yu, Y. H.; Lin, Y. H. Chem. Eng. J. 2021, 420, 129894.
[14]
Wang, L. B.; Yang, H. L.; Shu, T.; Xin, Y.; Chen, X.; Li, Y. Y.; Li, H.; Hu, X. L. ACS Appl. Energy Mater. 2018, 1, 1708.
[15]
Huo, J. H.; Xue, Y. J.; Zhang, L. F.; Wang, X. F.; Cheng, Y. Q.; Guo, S. W. J. Colloid Interf. Sci. 2019, 555, 791.
[16]
Zhu, G. Y.; Ma, L. B.; Lin, H. N.; Zhao, P. Y.; Wang, L.; Hu, Y.; Chen, R. P.; Wang, Y. R.; Tie, Z. X.; Jin, Z. Nano Res. 2019, 12, 1713.
[17]
Que, L. F.; Yu, F. D.; Wang, Z. B.; Gu, D. M. Small 2018, 14, 1704508.
[18]
Zhao, H. S.; Qi, Y. L.; Liang, K.; Zhu, W. K.; Wu, H. B.; Li, J. B.; Ren, Y. R. Rare Metals 2022, 41, 1284.
[19]
Huo, J. H.; Xue, Y. J.; Wang, X. F.; Liu, Y.; Zhang, L. F.; Guo, S. W. J. Power Sources 2020, 473, 228551.
[20]
Huo, J. H.; Ren, Y. J.; Zhang, G. Q.; Wang, X. F.; Guo, S. W. ACS Appl. Energy Mater. 2022, 5, 3447.
[21]
Yao, M. L.; Wang, H. K.; Qian, R. F.; Yao, T. H.; Shi, J. W.; Cheng, Y. H. Inorg. Chem. Front. 2021, 8, 5024.
[22]
Gan, Q. M.; He, H. N.; Zhu, Y. H.; Wang, Z. Y.; Qin, N.; Gu, S.; Li, Z. Q.; Luo, W.; Lu, Z. G. ACS Nano 2019, 13, 9247.
[23]
Ren, Y. J.; Zhang, G. Q.; Huo, J. H.; Li, J. H.; Liu, Y.; Guo, S. W. J. Alloy. Compd. 2022, 902, 163730.
[24]
Que, L. F.; Yu, F. D.; Deng, L.; Gu, D. M.; Wang, Z. B. Energy Storage Mater. 2020, 25, 537.
[25]
Fleischmann, S.; Mitchell, J. B.; Wang, R.; Zhan, C.; Jiang, D. E.; Presser, V.; Augustyn, V. Chem. Rev. 2020, 120, 6738.
[26]
Yang, C.; Lan, J. L.; Liu, W. X.; Liu, Y.; Yu, Y. H.; Yang, X. P. ACS Appl. Mater. Interfaces 2017, 9, 18710.
[27]
Wang, G.; Liu, Z. Y.; Wu, J. N.; Lu, Q. Mater. Lett. 2012, 71, 120.
[28]
Brousse, T.; Marchand, R.; Taberna, P. L.; Simon, P. J. Power Sources 2006, 158, 571.
文章导航

/