综述

生物基聚酯单体的定向催化制备

  • 于璐瑶 ,
  • 任祯 ,
  • 杨宇森 ,
  • 卫敏
展开
  • 北京化工大学化学学院 化工资源有效利用国家重点实验室 北京 100029

于璐瑶, 北京化工大学在读研究生, 2022年6月于北京化工大学化学工程学院化学工程与工艺专业获得学士学位, 随后加入北京化工大学化工资源有效利用国家重点实验室卫敏教授课题组, 主要研究方向为生物质有机酸的定向制备.

杨宇森, 博士, 副教授, 硕士生导师. 2019年于北京化工大学获得化学工程与技术博士学位, 师从卫敏教授. 2019年至今在北京化工大学化工资源有效利用国家重点实验室从事多相催化研究, 主要研究方向: (1) 生物质平台分子的定向催化转化; (2) 可再生资源途径制氢、氢气精制与高效利用. 目前, 已发表SCI研究论文40余篇. 以第一(含共一)作者和共同通讯作者在Nat. Commun.、ACS Catal.、Chem Catal.、Appl. Catal. B: Environ.、J. Catal.、Green Chem.、《化学学报》及《化工学报》等期刊发表学术论文29篇(其中IF>10的17篇), 他引1000余次. 参与编写专著1部, 授权国家发明专利1项, 获中国石油和化学工业联合会科技进步二等奖1项(2022年).

卫敏, 教授, 博士生导师. 2001年于北京大学获得理学博士学位, 同年加入北京化工大学, 2006年晋升为教授. 2008年佐治亚理工学院访问学者. 近年来从事一碳化学、能源催化、生物质催化转化研究工作. 以通讯作者在Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.等刊物发表SCI收录研究论文200余篇; 发表论文他引12600余次, 16篇论文入选基本科学指标数据库ESI高被引TOP 1%论文. 授权国际专利2项, 授权国家发明专利30余项. 现担任Science Bulletin期刊副主编, 催化学报编委, 中国化学会高级会员, 英国皇家化学会会士. 获2012年国家杰出青年基金资助; 获2015年中国石油和化学工业联合会科技进步一等奖; 入选2017年国家百千万人才工程, 被授予“有突出贡献中青年专家”称号; 获2019年第十五届中国青年科技奖.

收稿日期: 2022-11-12

  网络出版日期: 2022-12-21

基金资助

国家自然科学基金(22172006); 国家自然科学基金(21521005); 国家自然科学基金(22102006); 国家重点研发计划(2021YFC2103500); 北京市自然科学基金(2212012); 中央高校基本科研业务费(XK1803-05); 中国石化分子化学工程联合研发中心项目资助.

Directed Preparation of Biomass-based Polyester Monomers by Catalytic Conversion

  • Luyao Yu ,
  • Zhen Ren ,
  • Yusen Yang ,
  • Min Wei
Expand
  • State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029

Received date: 2022-11-12

  Online published: 2022-12-21

Supported by

National Natural Science Foundation of China(22172006); National Natural Science Foundation of China(21521005); National Natural Science Foundation of China(22102006); National Key Research and Development Program(2021YFC2103500); Beijing Natural Science Foundation(2212012); Fundamental Research Funds for the Central Universities(XK1803-05); Joint Research and Development Center of Molecular Chemical Engineering of SINOPEC

摘要

有机二羧酸是重要的聚酯单体, 广泛应用于化学纤维、轻工、电子等工业生产的各个方面. 随着社会工业化的发展, 以大量不可再生的石油资源为原料生产有机酸造成地球石油资源的匮乏和环境污染问题. 通过生物质及其衍生物来制备高附加值化学品有机二羧酸, 引起了化工应用领域的广泛关注. 在合成生物质有机二羧酸的研究中, 设计与制备具有高活性、高稳定性的催化剂具有重要意义. 近年来, 许多工作对催化剂的种类进行了探索, 并取得了一定的研究进展. 本文重点从生物质原料、催化剂性能评估、反应机理等方面对制备C3~C6二羧酸的催化体系进行了综述, 包括丙二酸、丁二酸、2,5-呋喃二甲酸和己二酸, 并对生物质有机二羧酸制备领域的发展进行了展望.

本文引用格式

于璐瑶 , 任祯 , 杨宇森 , 卫敏 . 生物基聚酯单体的定向催化制备[J]. 化学学报, 2023 , 81(2) : 175 -190 . DOI: 10.6023/A22110459

Abstract

Dicarboxylic acid is an important polyester monomer, which is widely used in all aspects of chemical fiber, light industry, electronics and other industrial production. With the development of social industrialization, the production of dicarboxylic acids from a large number of non-renewable petroleum resources has caused the lack of oil resources and environmental pollution of the earth. The preparation of high value-added chemicals dicarboxylic acids by biomass and its derivatives has attracted extensive attention in chemical applications. In the research of synthetic biomass dicarboxylic acid, it is of great significance to design and prepare catalysts with high activity and high stability. In recent years, many works have explored the types of catalysts and made certain research progress. In this review, the catalytic system for the preparation of C3~C6 dicarboxylic acid, including malonic acid, succinic acid, 2,5-furandicarboxylic acid and adipic acid, was reviewed from the aspects of biomass raw materials, catalyst performance evaluation and reaction mechanism, and the development of biomass dicarboxylic acid preparation is prospected.

参考文献

[1]
Iglesias, J.; Martinez-Salazar, I.; Maireles-Torres, P.; Alonso, D. M.; Mariscal, R.; Lopez Granados, M. Chem. Soc. Rev. 2020, 49, 5704.
[2]
Lin, Y.-C.; Huber, G. W. Energy Environ. Sci. 2009, 2, 68.
[3]
Carlson, T. R.; Cheng, Y.-T.; Jae, J.; Huber, G. W. Energy Environ. Sci. 2011, 4, 145.
[4]
Cheng, Y.-T.; Jae, J.; Shi, J.; Fan, W.; Huber, G. W. Angew. Chem. Int. Ed. 2012, 51, 1387.
[5]
Pang, S. Biotechnol. Adv. 2019, 37, 589.
[6]
Vassilev, S. V.; Vassileva, C. G.; Vassilev, V. S. Fuel. 2015, 158, 330.
[7]
Yu, Q.; Wang, Y.; Van Le, Q.; Yang, H.; Hosseinzadeh-Bandbafha, H.; Yang, Y.; Sonne, C.; Tabatabaei, M.; Lam, S. S.; Peng, W. Front. Energy Res. 2021, 9, 684234.
[8]
Tian, Z. W.; Da, W. M.; Wang, L.; Yang, Y. S.; Wei, M. Acta Chim. Sinica. 2022, 80, 1322. (in Chinese)
[8]
(田钊炜, 达伟民, 王雷, 杨宇森, 卫敏, 化学学报, 2022, 80, 1322.)
[9]
Morais, A. R. C.; da Costa Lopes, A. M.; Bogel-Lukasik, R. Chem. Rev. 2015, 115, 3.
[10]
Tanaka, T.; Lloyd, D. R. J. Membr. Sci. 2004, 238, 65.
[11]
Tanaka, T.; Ueno, M.; Watanabe, Y.; Kouya, T.; Taniguchi, M.; Lloyd, D. R. J. Chem. Eng. Japan. 2011, 44, 467.
[12]
Tanaka, T.; Nishimoto, T.; Tsukamoto, K.; Yoshida, M.; Kouya, T.; Taniguchi, M.; Lloyd, D. R. J. Membr. Sci. 2012, 396, 101.
[13]
Tiersch, T. R.; Monroe, W. T. Cryobiology. 2016, 73, 396.
[14]
Zhang, S. P.; Zhu, X. X.; Gong, Y. K. Acta Chim. Sinica. 2009, 67, 1903. (in Chinese)
[14]
(张世平, 朱霞霞, 宫永宽, 化学学报, 2009, 67, 1903.)
[15]
Zhang, W.; Ji, J. H.; Zhao, J.; Wang, X. W.; Xu, Y.; Yang, B.; Wang, P. L. New Chem. Mater. 2010, 38, 1. (in Chinese)
[15]
(张维, 季君晖, 赵剑, 王小威, 许颖, 杨冰, 王萍丽, 化工新型材料, 2010, 38, 1.)
[16]
Wan, Y.; Zhang, L.; Chen, Y.; Lin, J.; Hu, W.; Wang, S.; Lin, J.; Wan, S.; Wang, Y. Green Chem. 2019, 21, 6318.
[17]
Wang, Y.; Zhuang, M.; Chen, S.; Hu, W.; Sun, J.; Lin, J.; Wan, S.; Wang, Y. ACS Catal. 2017, 7, 6038.
[18]
Zhang, Z.; Huber, G. W. Chem. Soc. Rev. 2018, 47, 1351.
[19]
Dalli, S. S.; Tilaye, T. J.; Rakshit, S. K. Ind. Eng. Chem. Res. 2017, 56, 10582.
[20]
Vardon, D. R.; Franden, M. A.; Johnson, C. W.; Karp, E. M.; Guarnieri, M. T.; Linger, J. G.; Salm, M. J.; Strathmann, T. J.; Beckham, G. T. Energy Environ. Sci. 2022, 15, 3534.
[21]
Dong, K. Y.; Yang, T. T.; Wang, X. L.; He, Y.; Yu, J. Y. Text. Res. J. 2020, 41, 174. (in Chinese)
[21]
(董奎勇, 杨婷婷, 王学利, 何勇, 俞建勇, 纺织学报, 2020, 41, 174.)
[22]
Wan, Y.; Lee, J.-M. ACS Catal. 2021, 11, 2524.
[23]
Xie, C. W.; Bai, S.; Song, B. A.; Yang, S. Acta Chim. Sinica. 2013, 71, 1301. (in Chinese)
[23]
(谢承卫, 柏松, 宋宝安, 杨松, 化学学报, 2013, 71, 1301.)
[24]
Zhang, H. M.; Wei, W. L.; Chang, H. H. Appl. Chem. Ind. 2007, 653. (in Chinese)
[24]
(张红梅, 魏文珑, 常宏宏, 应用化工, 2007, 653.)
[25]
Dong, H. H.; Li, J.; Yang, G. Z. Shandong Chem. Ind. 2015, 44, 49. (in Chinese)
[25]
(董浩浩, 李静, 杨国忠, 山东化工, 2015, 44, 49.)
[26]
Yan, L. F.; Qi, X. Y. ACS Sustain. Chem. Eng. 2014, 2, 897.
[27]
Liu, J. X.; Du, Z. T.; Yang, Y. L.; Lu, T. L.; Lu, F.; Xu, J. ChemSusChem. 2012, 5, 2151.
[28]
Yan, L.; Qi, X. ACS Sustain. Chem. Eng. 2014, 2, 897.
[29]
Cukalovic, A.; Stevens, C. V. Biofuel Bioprod. Bior. 2008, 2, 505.
[30]
Song, H.; Lee, S. Y. Enzyme Microb. Technol. 2006, 39, 352.
[31]
Cheng, K.-K.; Zhao, X.-B.; Zeng, J.; Zhang, J.-A. Biofuel Bioprod. Bior. 2012, 6, 302.
[32]
Palai, Y. N.; Shrotri, A.; Fukuoka, A. ACS Catal. 2022, 12, 3534.
[33]
Ghayur, A.; Verheyen, T. V.; Meuleman, E. J. Clean. Prod. 2019, 230, 1165.
[34]
Kim, J. S.; Baek, J. H.; Ryu, Y. B.; Hong, S.-S.; Lee, M. S. J. Nanosci. Nanotechnol. 2015, 15, 290.
[35]
Lee, M. S.; Kim, J.-S.; Baek, J. H.; Soo, H. S. Appl. Chem. Eng. 2013, 24, 650.
[36]
Yuan, H.; Zhang, C.; Huo, W.; Ning, C.; Tang, Y.; Zhang, Y.; Cong, D.; Zhang, W.; Luo, J.; Li, S.; Wang, Z. J. Chem. Sci. 2014, 126, 141.
[37]
Choudhary, H.; Nishimura, S.; Ebitani, K. Appl. Catal., A: Gen. 2013, 458, 55.
[38]
Harmer, M. A.; Sun, Q. Appl. Catal., A: Gen. 2001, 221, 45.
[39]
Zhu, W.; Tao, F.; Chen, S.; Li, M.; Yang, Y.; Lv, G. ACS Sustain. Chem. Eng. 2019, 7, 296.
[40]
Thubsuang, U.; Chotirut, S.; Nuithitikul, K.; Payaka, A.; Manmuanpom, N.; Chaisuwan, T.; Wongkasemjit, S. J Colloid Interface Sci. 2020, 565, 96.
[41]
Maneechakr, P.; Karnjanakom, S. Energy Convers. Manage. 2017, 154, 299.
[42]
Waidmann, C. R.; DiPasquale, A. G.; Mayer, J. M. Inorg. Chem. 2010, 49, 2383.
[43]
Shetti, V. N.; Manikandan, P.; Srinivas, D.; Ratnasamy, P. J. Catal. 2003, 216, 461.
[44]
Podolean, L.; Kuncser, V.; Gheorghe, N.; Macovei, D.; Parvulescu, V. I.; Coman, S. M. Green Chem. 2013, 15, 3077.
[45]
Carnevali, D.; Rigamonti, M. G.; Tabanelli, T.; Patience, G. S.; Cavani, F. Appl. Catal., A: Gen. 2018, 563, 98.
[46]
Song, L.; Wang, R.; Che, L.; Jiang, Y.; Zhou, M.; Zhao, Y.; Pang, J.; Jiang, M.; Zhou, G.; Zheng, M.; Zhang, T. ACS Catal. 2021, 11, 11588.
[47]
Tachibana, Y.; Yamahata, M.; Kimura, S.; Kasuya, K.-i. ACS Sustain. Chem. Eng. 2018, 6, 10806.
[48]
Podolean, I.; Rizescu, C.; Bala, C.; Rotariu, L.; Parvulescu, V. I.; Coman, S. M.; Garcia, H. ChemSusChem. 2016, 9, 2307.
[49]
Rizescu, C.; Podolean, I.; Cojocaru, B.; Parvulescu, V. I.; Coman, S. M.; Albero, J.; Garcia, H. ChemCatChem. 2017, 9, 3314.
[50]
Tirsoaga, A.; El Fergani, M.; Parvulescu, V. I.; Coman, S. M. ACS Sustain. Chem. Eng. 2018, 6, 14292.
[51]
Xu, M.; Wang, W. F.; Wei, Y. J.; Zhu, Q. Y.; Fang, W. Y.; Zhu, C. G. Acta Chim. Sinica. 2012, 70, 87. (in Chinese)
[51]
(徐迈, 王凤武, 魏亦军, 朱其永, 方文彦, 朱传高, 化学学报, 2012, 70, 87.)
[52]
Beerthuis, R.; Rothenberg, G.; Shiju, N. R. Green Chem. 2015, 17, 1341.
[53]
Han, J. Energy Convers. Manage. 2016, 129, 75.
[54]
Xie, Q. F.; Chen, Y. M.; Huang, M. L.; Lin, B. Z. Acta Chim. Sinica. 2008, 66, 2107. (in Chinese)
[54]
(解庆范, 陈延民, 黄妙龄, 林碧洲, 化学学报, 2008, 66, 2107.)
[55]
Van de Vyver, S.; Roman-Leshkov, Y. Catal. Sci. Technol. 2013, 3, 1465.
[56]
Rahman, A.; Mupa, M.; Mahamadi, C. Catal. Lett. 2016, 146, 788.
[57]
Moudjahed, M.; Dermeche, L.; Benadji, S.; Mazari, T.; Rabia, C. J. Mol. Catal., A: Chem. 2016, 414, 72.
[58]
Luo, J.; Huang, Y.; Ding, B.; Wang, P.; Geng, X.; Zhang, J.; Wei, Y. Catalysts. 2018, 8, 121.
[59]
Chen, S.; Wojcieszak, R.; Dumeignil, F.; Marceau, E.; Royer, S. Chem. Rev. 2018, 118, 11023.
[60]
Hamed, O.; El-Qisairi, A.; Henry, P. M. Tetrahedron Lett. 2000, 41, 3021.
[61]
Wu, D.; Chen, Z.; Jia, Z.; Shuai, L. Sci. China Chem. 2012, 55, 380.
[62]
Zhang, G.-S.; Zhu, M.-M.; Zhang, Q.; Liu, Y.-M.; He, H.-Y.; Cao, Y. Green Chem. 2016, 18, 2155.
[63]
Kang, S.; Fu, J.; Zhang, G. Renew. Sust. Energ. Rev. 2018, 94, 340.
[64]
De, S.; Saha, B.; Luque, R. Bioresour. Technol. 2015, 178, 108.
[65]
Nobbs, J. D.; Zainal, N. Z. B.; Tan, J.; Drent, E.; Stubbs, L. P.; Li, C.; Lim, S. C. Y.; Kumbang, D. G. A.; van Meurs, M. Chemistryselect. 2016, 1, 539.
[66]
Larson, R. T.; Samant, A.; Chen, J.; Lee, W.; Bohn, M. A.; Ohlmann, D. M.; Zuend, S. J.; Toste, F. D. J. Am. Chem. Soc. 2017, 139, 14001.
[67]
Lin, J.; Song, H.; Shen, X.; Wang, B.; Xie, S.; Deng, W.; Wu, D.; Zhang, Q.; Wang, Y. Chem. Commun. 2019, 55, 11017.
[68]
Asano, T.; Tamura, M.; Nakagawa, Y.; Tomishige, K. ACS Sustain. Chem. Eng. 2016, 4, 6253.
[69]
Wei, L.; Zhang, J.; Deng, W.; Xie, S.; Zhang, Q.; Wang, Y. Chem. Commun. 2019, 55, 8013.
[70]
Delhomme, C.; Weuster-Botz, D.; Kuehn, F. E. Green Chem. 2009, 11, 13.
[71]
Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12, 539.
[72]
Burgess, S. K.; Mikkilineni, D. S.; Yu, D. B.; Kim, D. J.; Mubarak, C. R.; Kriegel, R. M.; Koros, W. J. Polymer. 2014, 55, 6870.
[73]
Burgess, S. K.; Karvan, O.; Johnson, J. R.; Kriegel, R. M.; Koros, W. J. Polymer. 2014, 55, 4748.
[74]
de Jong, E.; Dam, M. A.; Sipos, L.; Gruter, G. J. M. ACS Symposium Series. 2012, 1105, 1.
[75]
Choudhary, H.; Nishimura, S.; Ebitani, K. Chem. Lett. 2012, 41, 409.
[76]
Shu, H.; Bao, Y.; Na, Y. Acta Chim. Sinica. 2022, 80, 607. (in Chinese)
[76]
(舒恒, 包义德日根, 那永, 化学学报, 2022, 80, 607.)
[77]
Zhou, C.; Deng, W.; Wan, X.; Zhang, Q.; Yang, Y.; Wang, Y. ChemCatChem. 2015, 7, 2853.
[78]
Donoeva, B.; Masoud, N.; de Jongh, P. E. ACS Catal. 2017, 7, 4581.
[79]
Cai, J.; Ma, H.; Zhang, J.; Song, Q.; Du, Z.; Huang, Y.; Xu, J. Chem-Eur. J. 2013, 19, 14215.
[80]
Kim, M.; Su, Y.; Fukuoka, A.; Hensen, E. J. M.; Nakajima, K. Angew. Chem. Int. Ed. 2018, 57, 8235.
[81]
Zhou, H.; Xu, H.; Liu, Y. Appl. Catal. B: Environ. 2019, 244, 965.
[82]
Ventura, M.; Aresta, M.; Dibenedetto, A. ChemSusChem. 2016, 9, 1096.
[83]
Davis, S. E.; Zope, B. N.; Davis, R. J. Green Chem. 2012, 14, 143.
[84]
Rao, K. T. V.; Rogers, J. L.; Souzanchi, S.; Dessbesell, L.; Ray, M. B.; Xu, C. ChemSusChem. 2018, 11, 3323.
[85]
Yu, H.; Kim, K.-A.; Kang, M. J.; Hwang, S. Y.; Cha, H. G. ACS Sustain. Chem. Eng. 2019, 7, 3742.
[86]
Siyo, B.; Schneider, M.; Radnik, J.; Pohl, M.-M.; Langer, P.; Steinfeldt, N. Appl. Catal., A: Gen. 2014, 478, 107.
[87]
Megias-Sayago, C.; Chakarova, K.; Penkova, A.; Lolli, A.; Ivanova, S.; Albonetti, S.; Cavani, F.; Antonio Odriozola, J. ACS Catal. 2018, 8, 11154.
[88]
Yi, G.; Teong, S. P.; Zhang, Y. Green Chem. 2016, 18, 979.
[89]
Hayashi, E.; Komanoya, T.; Kamata, K.; Hara, M. ChemSusChem. 2017, 10, 654.
[90]
Siankevich, S.; Savoglidis, G.; Fei, Z.; Laurenczy, G.; Alexander, D. T. L.; Yan, N.; Dyson, P. J. J. Catal. 2014, 315, 67.
[91]
Gupta, N. K.; Nishimura, S.; Takagaki, A.; Ebitani, K. Green Chem. 2011, 13, 824.
[92]
Wan, X.; Zhou, C.; Chen, J.; Deng, W.; Zhang, Q.; Yang, Y.; Wang, Y. ACS Catal. 2014, 4, 2175.
[93]
Ke, C.; Li, M.; Fan, G.; Yang, L.; Li, F. Chem-Asian J. 2018, 13, 2714.
[94]
Antonyraj, C. A.; Nhan Thanh Thien, H.; Lee, K. W.; Kim, Y. J.; Shin, S.; Shin, J. S.; Cho, J. K. J. Chem. Sci. 2018, 130, 156.
[95]
Xia, H.; An, J.; Hong, M.; Xu, S.; Zhang, L.; Zuo, S. Catal. Today. 2019, 319, 113.
[96]
Kim, M.; Su, Y. Q.; Fukuoka, A.; Hensen, E. J. M.; Nakajima, K. Angew. Chem. Int. Ed. 2018, 57, 8235.
[97]
Liu, Y.; Ma, H.-Y.; Lei, D.; Lou, L.-L.; Liu, S.; Zhou, W.; Wang, G.-C.; Yu, K. ACS Catal. 2019, 9, 8306.
[98]
Li, Q.; Wang, H.; Tian, Z.; Weng, Y.; Wang, C.; Ma, J.; Zhu, C.; Li, W.; Liu, Q.; Ma, L. Catal. Sci. Technol. 2019, 9, 1570.
[99]
Schade, O. R.; Kalz, K. F.; Neukum, D.; Kleist, W.; Grunwaldt, J. D. Green Chem. 2018, 20, 3530.
[100]
Chen, H.; Shen, J.; Chen, K.; Qin, Y.; Lu, X.; Ouyang, P.; Fu, J. Appl. Catal., A: Gen. 2018, 555, 98.
[101]
Han, X.; Li, C.; Liu, X.; Xia, Q.; Wang, Y. Green Chem. 2017, 19, 996.
[102]
Liu, H.; Tang, X.; Zeng, X.; Sun, Y.; Ke, X.; Li, T.; Zhang, J.; Lin, L. Green Energ. Environ. 2022, 7, 900.
[103]
Nie, J. F.; Liu, H. C. J. Catal. 2014, 316, 57.
[104]
Yan, Y.; Li, K.; Zhao, J.; Cai, W.; Yang, Y.; Lee, J.-M. Appl. Catal. B: Environ. 2017, 207, 358.
[105]
Liu, X.; Luo, Y.; Ma, H.; Zhang, S. J.; Che, P. H.; Zhang, M. Y.; Gao, J.; Xu, J. Angew. Chem. Int. Ed. 2021, 60, 18103.
[106]
Hayashi, E.; Yamaguchi, Y.; Kamata, K.; Tsunoda, N.; Kumagai, Y.; Oba, F.; Hara, M. J. Am. Chem. Soc. 2019, 141, 890.
[107]
Liu, X. Y.; Zhang, M.; Li, Z. H. ACS Sustain. Chem. Eng. 2020, 8, 4801.
[108]
Ventura, M.; Nocito, F.; de Giglio, E.; Cometa, S.; Altomare, A.; Dibenedetto, A. Green Chem. 2018, 20, 3921.
[109]
Gao, T.; Yin, Y.; Zhu, G.; Cao, Q.; Fang, W. Catal. Today. 2020, 355, 252.
[110]
Gomes, M.; Gandini, A.; Silvestre, A. J. D.; Reis, B. J. Polym. Sci. Pol. Chem. 2011, 49, 3759.
[111]
Gruter, G.-J. M.; Sipos, L.; Dam, M. A. Comb. Chem. High T. Scr. 2012, 15, 180.
[112]
Knoop, R. J. I.; Vogelzang, W.; van Haveren, J.; van Es, D. S. J. Polym. Sci. Pol. Chem. 2013, 51, 4191.
[113]
Terzopoulou, Z.; Tsanaktsis, V.; Nerantzaki, M.; Achilias, D. S.; Vaimakis, T.; Papageorgiou, G. Z.; Bikiaris, D. N. J. Anal. Appl. Pyrolysis. 2016, 117, 162.
[114]
Pfister, D.; Storti, G.; Tancini, F.; Costa, L. I.; Morbidelli, M. Macromol. Chem. Phys. 2015, 216, 2141.
[115]
Wang, X. S.; Wang, G. Y. Fine Chemicals. 2019, 36, 2341. (in Chinese)
[115]
(王贤松, 王公应, 精细化工, 2019, 36, 2341.)
文章导航

/