机器学习在新材料筛选方面的应用进展
收稿日期: 2022-11-01
网络出版日期: 2022-12-26
基金资助
国家自然科学基金(21922801); 国家自然科学基金(22090032); 国家自然科学基金(22090030); 北京自然科学基金(2202036)
Recent Advance of Machine Learning in Selecting New Materials
Received date: 2022-11-01
Online published: 2022-12-26
Supported by
National Natural Science Foundation of China(21922801); National Natural Science Foundation of China(22090032); National Natural Science Foundation of China(22090030); Natural Science Foundation of Beijing(2202036)
新材料产业是许多相关领域技术变革的基础, 也是新能源、航空航天、电子信息等高新技术产业发展的先导. 传统研发手段由于成本高、效率低、商业化周期长等不利因素无法满足现代社会的发展需求. 近年来大数据与人工智能不断深入结合, 以数据驱动为核心的机器学习在新材料设计、筛选以及性能预测等方面取得巨大进展, 极大促进了新材料的研发与应用. 本综述总结了机器学习的基本过程及其在材料科学中常用的算法和相关材料数据库, 重点介绍了机器学习在不同功能上的应用以及在催化剂材料、锂离子电池、半导体材料和合金材料等领域的性能预测和材料开发中的最新进展, 并对其下一步在新材料应用方面提出展望.
戚兴怡 , 胡耀峰 , 王若愚 , 杨雅清 , 赵宇飞 . 机器学习在新材料筛选方面的应用进展[J]. 化学学报, 2023 , 81(2) : 158 -174 . DOI: 10.6023/A22110446
The new material industry is the foundation of technological change in many related fields, and also the forerunner of the development of new energy, aerospace, electronic information and other high-tech industries. Traditional means cannot meet the development needs of modern society because of disadvantages such as high cost, low efficiency and long commercial cycle. In recent years, with the application of big data combined with artificial intelligence in a deeper degree, data-driven machine learning has made great progress in the design, screening and performance prediction of new materials, which has greatly promoted the development and application of new materials. In this review, the basic process of machine learning, the algorithms commonly used in materials science and the relevant materials database are summarized. This review focuses on the application of machine learning in different functions, as well as the performance prediction in the fields of catalyst materials, lithium-ion batteries, semiconductor materials and alloy materials, presenting the latest progress in materials development. Finally, machine learning in the application of new materials are analyzed and prospected.
[1] | Correa-Baena, J.-P.; Hippalgaonkar, K.; van Duren, J.; Jaffer, S.; Chandrasekhar, V. R.; Stevanovic, V.; Wadia, C.; Guha, S.; Buonassisi, T. Joule. 2018, 2, 1410. |
[2] | Feng, N.; Wang, H. J.; Li, M. Inf. Sci. 2014, 256, 57. |
[3] | Chen, A.; Zhang, X.; Zhou, Z. InfoMat. 2020, 2, 553. |
[4] | Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Npj Comput. Mater. 2017, 3, 1. |
[5] | Hachmann, J.; Olivares-Amaya, R.; Atahan-Evrenk, S.; Amador- Bedolla, C.; Sánchez-Carrera, R. S.; Gold-Parker, A.; Vogt, L.; Brockway, A. M.; Aspuru-Guzik, A. J. Phys. Chem. Lett. 2011, 2, 2241. |
[6] | Kirklin, S.; Saal, J. E.; Meredig, B.; Thompson, A.; Doak, J. W.; Aykol, M.; Rühl, S.; Wolverton, C. Npj Comput. Mater. 2015, 1, 1. |
[7] | Curtarolo, S.; Setyawan, W.; Hart, G. L.; Jahnatek, M.; Chepulskii, R. V.; Taylor, R. H.; Wang, S.; Xue, J.; Yang, K.; Levy, O. Comput. Mater. Sci. 2012, 58, 218. |
[8] | Sun, Z. T.; Li, Z. Z.; Cheng, G. J.; Xu, Q. C.; Hou, Z. F.; Yin, W. J. Chin. Sci. Bull. 2019, 64, 3270. (in Chinese) |
[8] | (孙中体, 李珍珠, 程观剑, 徐其琛, 侯柱锋, 尹万健, 科学通报, 2019, 64, 3270.) |
[9] | Suh, C.; Fare, C.; Warren, J. A.; Pyzer-Knapp, E. O. Annu. Rev. Mater. Res. 2020, 50, 1. |
[10] | Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Nature. 2018, 559, 547. |
[11] | Zhu, B. Y.; Wu, R. L.; Yu, X. Acta Chim. Sinica. 2020, 78, 1366. (in Chinese) |
[11] | (朱博阳, 吴睿龙, 于曦, 化学学报, 2020, 78, 1366.) |
[12] | Sun, Y. M.; Liao, H. B.; Wang, J. R.; Chen, B.; Sun, S. N.; Ong, S. J. H.; Xi, S. B.; Diao, C. Z.; Du, Y. H.; Wang, J. O.; Breese, M. B. H.; Li, S. Z.; Zhang, H.; Xu, Z. C. J. Nat. Catal. 2020, 3, 554. |
[13] | Deringer, V. L.; Bernstein, N.; Csanyi, G.; Ben Mahmoud, C.; Ceriotti, M.; Wilson, M.; Drabold, D. A.; Elliott, S. R. Nature. 2021, 589, 59. |
[14] | Cai, C. Z.; Li, L. F.; Deng, X. M.; Li, S. H.; Liang, H.; Qiao, Z. W. Acta Chim. Sinica. 2020, 78, 427. (in Chinese) |
[14] | (蔡铖智, 李丽凤, 邓小梅, 李树华, 梁红, 乔智威, 化学学报, 2020, 78, 427.) |
[15] | Sheng, Y.; Wu, Y. S.; Yang, J.; Lu, W. C.; Villars, P.; Zhang, W. Q. Npj Comput. Mater. 2020, 6, 1. |
[16] | Luo, H.; Sohn, S. S.; Lu, W. J.; Li, L. L.; Li, X. G.; Soundararajan, C. K.; Krieger, W.; Li, Z. M.; Raabe, D. Nat. Commun. 2020, 11, 1. |
[17] | Lin, H.; Zheng, J. X.; Lin, Y.; Pan, F. Energy. Stor. Sci. Technol. 2017, 6, 990. (in Chinese) |
[17] | (林海, 郑家新, 林原, 潘锋, 储能科学与技术, 2017, 6, 990.) |
[18] | Pei, J. F.; Cai, C. Z.; Zhu, Y. M.; Yan, B. Macromol. Theory Simul. 2013, 22, 52. |
[19] | Juan, Y.; Dai, Y.; Yang, Y.; Zhang, J. J. Mater. Sci. Technol. 2021, 79, 178. |
[20] | Wang, H.; Ji, Y.; Li, Y. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2019, 10, e1421. |
[21] | Mi, X. X.; Tang, A. T.; Zhu, Y. C.; Kang, L.; Pan, F. S. Mater. Rep. 2021, 15, 1. (in Chinese) |
[21] | (米晓希, 汤爱涛, 朱雨晨, 康靓, 潘复生, 材料导报, 2021, 15, 1.) |
[22] | Somvanshi, M.; Chavan, P.; Tambade, S.; Shinde, S. V. ICCUBEA. 2016, pp. 1-7. |
[23] | Diamantopoulou, M. J.; Papamichail, D. M.; Antonopoulos, V. Z. Oper. Res. 2005, 5, 115. |
[24] | Goh, G. B.; Hodas, N. O.; Vishnu, A. J. Comput. Chem. 2017, 38, 1291. |
[25] | Fang, S.; Wang, M.; Qi, W.; Zheng, F. Comput. Mater. Sci. 2008, 44, 647. |
[26] | Wei, J.; Chu, X.; Sun, X. Y.; Xu, K.; Deng, H. X.; Chen, J.; Wei, Z.; Lei, M. InfoMat. 2019, 1, 338. |
[27] | Kalidindi, S. R.; De Graef, M. Annu. Rev. Mater. Res. 2015, 45, 171. |
[28] | Liu, Y.; Zhao, T.; Ju, W.; Shi, S. J. Materiomics. 2017, 3, 159. |
[29] | Liu, Y.; Niu, C.; Wang, Z.; Gan, Y.; Zhu, Y.; Sun, S.; Shen, T. J. Mater. Sci. Technol. 2020, 57, 113. |
[30] | Liu, Z. L.; Li, W.; Liu, H.; Zhuang, X, D.; Li, S. Acta Chim. Sinica. 2019, 77, 323. (in Chinese) |
[30] | (刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.) |
[31] | Lian, Z.; Yang, M.; Jan, F.; Li, B. J. Phys. Chem. Lett. 2021, 12, 7053. |
[32] | Zhang, Q.; Zheng, Y. J.; Sun, W.; Ou, Z.; Odunmbaku, O.; Li, M.; Chen, S.; Zhou, Y.; Li, J.; Qin, B.; Sun, K. Adv. Sci. 2022, 9, 2104742. |
[33] | Wang, X.; Gao, Y.; Krzystowczyk, E.; Iftikhar, S.; Dou, J.; Cai, R.; Wang, H.; Ruan, C.; Ye, S.; Li, F. Energy Environ. Sci. 2022, 15, 1512. |
[34] | Jie, J.; Hu, Z.; Qian, G.; Weng, M.; Li, S.; Li, S.; Hu, M.; Chen, D.; Xiao, W.; Zheng, J.; Wang, L.; Pan, F. Sci. Bull. 2019, 64, 612. |
[35] | Faber, F.; Lindmaa, A.; von Lilienfeld, O. A.; Armiento, R. Int. J. Quantum. Chem. 2015, 115, 1094. |
[36] | Nolan, A. M.; Liu, Y.; Mo, Y. ACS Energy Lett. 2019, 4, 2444. |
[37] | Bartel, C. J.; Trewartha, A.; Wang, Q.; Dunn, A.; Jain, A.; Ceder, G. Npj Comput. Mater. 2020, 6, 1. |
[38] | Lu, S.; Zhou, Q.; Ouyang, Y.; Guo, Y.; Li, Q.; Wang, J. Nat Commun. 2018, 9, 1. |
[39] | Rajan, A. C.; Mishra, A.; Satsangi, S.; Vaish, R.; Mizuseki, H.; Lee, K.-R.; Singh, A. K. Chem. Mater. 2018, 30, 4031. |
[40] | Stanev, V.; Oses, C.; Kusne, A. G.; Rodriguez, E.; Paglione, J.; Curtarolo, S; Takeuchi, I. Npj Comput. Mater. 2018, 4, 1. |
[41] | Owolabi, T. O.; Akande, K. O.; Olatunji, S. O. Adv. Phys. Theor. Appl. 2014, 35, 12. |
[42] | Xie, S.; Stewart, G.; Hamlin, J.; Hirschfeld, P.; Hennig, R. Phys. Rev. B. 2019, 100, 174513. |
[43] | Allen, P. B.; Dynes, R. Phys. Rev. B. 1975, 12, 905. |
[44] | Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. Sci. Adv. 2019, 5, eaav0693. |
[45] | Chen, X.; Chen, D.; Weng, M.; Jiang, Y.; Wei, G. W.; Pan, F. J. Phys. Chem. Lett. 2020, 11, 4392. |
[46] | Timoshenko, J.; Lu, D.; Lin, Y.; Frenkel, A. I. J. Phys. Chem. Lett. 2017, 8, 5091. |
[47] | Ou, Z.; Liu, C.; Yao, L.; Chen, Q. Acc. Mater. Res. 2020, 1, 41. |
[48] | LeCun, Y.; Bengio, Y.; Hinton, G. Nature. 2015, 521, 436. |
[49] | Ziatdinov, M.; Dyck, O.; Maksov, A.; Li, X.; Sang, X.; Xiao, K.; Unocic, R. R.; Vasudevan, R.; Jesse, S.; Kalinin, S. V. ACS Nano. 2017, 11, 12742. |
[50] | Kwoen, J.; Arakawa, Y. Cryst. Growth Des. 2020, 20, 5289. |
[51] | Nada, H. ACS Omega. 2018, 3, 5789. |
[52] | Fortunato, M. E.; Coley, C. W.; Barnes, B. C.; Jensen, K. F. J. Chem. Inf. Model. 2020, 60, 3398. |
[53] | Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. J. Chem. Theory Comput. 2015, 11, 2087. |
[54] | Dral, P. O. J. Phys. Chem. Lett. 2020, 11, 2336. |
[55] | Zhang, P.; Shen, L.; Yang, W. J. Phys. Chem. B. 2018, 123, 901. |
[56] | Dral, P. O.; von Lilienfeld, O. A.; Thiel, W. J. Chem. Theory Comput. 2015, 11, 2120. |
[57] | Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M. E.; Burke, K.; Müller, K.-R. Nat. Commun. 2017, 8, 1. |
[58] | Chandrasekaran, A.; Kamal, D.; Batra, R.; Kim, C.; Chen, L.; Ramprasad, R. Npj Comput. Mater. 2019, 5, 1. |
[59] | Zhang, Z.; Zhang, Y.; Wang, J.; Xu, J.; Long, R. J. Phys. Chem. Lett. 2021, 12, 835. |
[60] | Shang, C.; Liu, Z.-P. J. Chem. Theory Comput. 2013, 9, 1838. |
[61] | Shang, C.; Zhang, X.-J.; Liu, Z.-P. Phys. Chem. Chem. Phys. 2014, 16, 17845. |
[62] | Huang, S.-D.; Shang, C.; Zhang, X.-J.; Liu, Z.-P. Chem. Sci. 2017, 8, 6327. |
[63] | Huang, S.-D.; Shang, C.; Kang, P.-L.; Liu, Z.-P. Chem. Sci. 2018, 9, 8644. |
[64] | Huang, S. D.; Shang, C.; Kang, P. L.; Zhang, X. J.; Liu, Z. P. Wiley Interdiscip. Rev. : Comput. Mol. Sci. 2019, 9, e1415. |
[65] | Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471. |
[66] | Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I. J. Comput. Chem. 2010, 31, 671. |
[67] | Wang, H.; Zhang, L.; Han, J.; Weinan, E. Comput. Phys. Commun. 2018, 228, 178. |
[68] | Yang, S. X. World. Nonferrous. Met. 2020, 14, 154. (in Chinese) |
[68] | (杨素心, 世界有色金属, 2020, 14, 154.) |
[69] | Goldschmidt, V. M. Naturwiss. 1926, 14, 477. |
[70] | Li, Z.; Xu, Q.; Sun, Q.; Hou, Z.; Yin, W. J. Adv. Funct. Mater. 2019, 29, 1807280. |
[71] | Weng, B.; Song, Z.; Zhu, R.; Yan, Q.; Sun, Q.; Grice, C. G.; Yan, Y.; Yin, W. J. Nat Commun. 2020, 11, 3513. |
[72] | Feng, H.-J.; Wu, K.; Deng, Z.-Y. Cell Rep. Phys. Sci. 2020, 1, 100179. |
[73] | Kirman, J.; Johnston, A.; Kuntz, D. A.; Askerka, M.; Gao, Y.; Todorovi?, P.; Ma, D.; Privé, G. G; Sargent, E. H. Matter. 2020, 2, 938. |
[74] | He, Y.; Cubuk, E. D.; Allendorf, M. D.; Reed, E. J. J. Phys. Chem. Lett. 2018, 9, 4562. |
[75] | Gordillo, M. A.; Benavides, P. A.; Panda, D. K.; Saha, S. ACS Appl. Mater. Interfaces. 2020, 12, 12955. |
[76] | Mannodi-Kanakkithodi, A.; Toriyama, M. Y.; Sen, F. G.; Davis, M. J.; Klie, R. F.; Chan, M. K. Npj Comput. Mater. 2020, 6, 1. |
[77] | Chen, G.; Shen, Z.; Iyer, A.; Ghumman, U. F.; Tang, S.; Bi, J.; Chen, W.; Li, Y. Polymers. 2020, 12, 163. |
[78] | Gormley, A. J.; Webb, M. A. Nat. Rev. Mater. 2021, 6, 642. |
[79] | Shmilovich, K.; Mansbach, R. A.; Sidky, H.; Dunne, O. E.; Panda, S. S.; Tovar, J. D.; Ferguson, A. L. J. Phys. Chem. B. 2020, 124, 3873. |
[80] | Yan, C.; Feng, X.; Li, G. ACS Appl. Mater. Interfaces. 2021, 13, 60508. |
[81] | Webb, M. A.; Jackson, N. E.; Gil, P. S.; de Pablo, J. J. Sci. Adv. 2020, 6, eabc6216. |
[82] | Giuntoli, A.; Hansoge, N. K.; van Beek, A.; Meng, Z.; Chen, W.; Keten, S. npj Comput. Mater. 2021, 7, 1. |
[83] | Writer, B.; Batteries, L.-I. A Machine-generated Summary of Current Research. Springer, Cham, Switzerland, 2019. |
[84] | Ceder, G. MRS bull. 2010, 35, 693. |
[85] | Li, W.; Zhu, J.; Xia, Y.; Gorji, M. B.; Wierzbicki, T. Joule. 2019, 3, 2703. |
[86] | Severson, K. A.; Attia, P. M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M. H.; Aykol, M.; Herring, P. K.; Fraggedakis, D.; Bazant, M. Z.; Harris, S. J.; Chueh, W. C.; Braatz, R. D. Nat. Energy. 2019, 4, 383. |
[87] | Homma, K.; Liu, Y.; Sumita, M.; Tamura, R.; Fushimi, N.; Iwata, J.; Tsuda, K.; Kaneta, C. J. Phys. Chem. C. 2020, 124, 12865. |
[88] | Dixit, M. B.; Verma, A.; Zaman, W.; Zhong, X.; Kenesei, P.; Park, J. S.; Almer, J.; Mukherjee, P. P.; Hatzell, K. B. ACS Appl. Energy Mater. 2020, 3, 9534. |
[89] | Panosetti, C.; Annies, S. B.; Grosu, C.; Seidlmayer, S.; Scheurer, C. J. Phys. Chem. A. 2021, 125, 691. |
[90] | Wang, Y.; Xie, T.; France-Lanord, A.; Berkley, A.; Johnson, J. A.; Shao-Horn, Y.; Grossman, J. C. Chem. Mater. 2020, 32, 4144. |
[91] | Jiang, Z.; Li, J.; Yang, Y.; Mu, L.; Wei, C.; Yu, X.; Pianetta, P.; Zhao, K.; Cloetens, P.; Lin, F. Nat. Commun. 2020, 11, 1. |
[92] | Sendek, A. D.; Antoniuk, E. R.; Cubuk, E. D.; Ransom, B.; Francisco, B. E.; Buettner-Garrett, J.; Cui, Y.; Reed, E. J. ACS Appl. Mater. Interfaces. 2020, 12, 37957. |
[93] | Sendek, A. D.; Cubuk, E. D.; Antoniuk, E. R.; Cheon, G.; Cui, Y.; Reed, E. J. Chem. Mater. 2018, 31, 342. |
[94] | Wang, C.; Aoyagi, K.; Wisesa, P.; Mueller, T. Chem. Mater. 2020, 32, 3741. |
[95] | Toyao, T.; Maeno, Z.; Takakusagi, S.; Kamachi, T.; Takigawa, I.; Shimizu, K.-i. ACS Catal. 2019, 10, 2260. |
[96] | Kitchin, J. R. Nat. Catal. 2018, 1, 230. |
[97] | Sun, Z.; Yin, H.; Liu, K.; Cheng, S.; Li, G. K.; Kawi, S.; Zhao, H.; Jia, G.; Yin, Z. SmartMat. 2022, 3, 68. |
[98] | Chen, A.; Zhang, X.; Chen, L.; Yao, S.; Zhou, Z. J. Phys. Chem. C. 2020, 124, 22471. |
[99] | Tran, K.; Ulissi, Z. W. Nat. Catal. 2018, 1, 696. |
[100] | Zhong, M.; Tran, K.; Min, Y.; Wang, C.; Wang, Z.; Dinh, C.-T.; De Luna, P.; Yu, Z.; Rasouli, A. S.; Brodersen, P. Nature. 2020, 581, 178. |
[101] | Batchelor, T. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. Joule. 2019, 3, 834. |
[102] | Liu, J.; Liu, H.; Chen, H.; Du, X.; Zhang, B.; Hong, Z.; Sun, S.; Wang, W. Adv. Sci. 2020, 7, 1901614. |
[103] | Fujishima, A.; Honda, K. Nature. 1972, 238, 37. |
[104] | Zhang, Y.; Xu, X. ACS Omega. 2020, 5, 15344. |
[105] | Can, E.; Yildirim, R. Appl. Catal., B. 2019, 242, 267. |
[106] | Bai, Y.; Wilbraham, L.; Slater, B. J.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. J. Am. Chem. Soc. 2019, 141, 9063. |
[107] | Corma, A.; Moliner, M.; Serra, J. M.; Serna, P.; Díaz-Caba?as, M. J.; Baumes, L. A. Chem. Mater. 2006, 18, 3287. |
[108] | Muraoka, K.; Sada, Y.; Miyazaki, D.; Chaikittisilp, W.; Okubo, T. Nat. Commun. 2019, 10, 1. |
[109] | Boyd, P. G.; Chidambaram, A.; García-Díez, E.; Ireland, C. P.; Daff, T. D.; Bounds, R.; G?adysiak, A.; Schouwink, P.; Moosavi, S. M.; Maroto-Valer, M. M.; Reimer, J. A.; Navarro, J. A. R.; Woo, T. K.; Garcia, S.; Stylianou, K. C.; Smit, B. Nature. 2019, 576, 253. |
[110] | Ma, S.; Liu, Z.-P. ACS Catal. 2020, 10, 13213. |
[111] | Ma, S. C.; Liu, Z.-P. Chem. Ind. Eng. Prog. 2020, 39, 3433. (in Chinese) |
[111] | (马思聪, 刘智攀, 化工进展, 2020, 39, 3433.) |
[112] | Deng, C.; Su, Y.; Li, F.; Shen, W.; Chen, Z.; Tang, Q. J. Mater. Chem. A. 2020, 8, 24563. |
[113] | Ishioka, S.; Fujiwara, A.; Nakanowatari, S.; Takahashi, L.; Taniike, T.; Takahashi, K. ACS Catal. 2022, 12, 11541. |
[114] | Yang, Z.; Gao, W. Adv. Sci. 2022, 9, 2106043. |
[115] | J?ger, M. O.; Morooka, E. V.; Canova, F. F.; Himanen, L.; Foster, A. S. Npj Comput. Mater. 2018, 4, 1. |
[116] | Ulissi, Z. W.; Singh, A. R.; Tsai, C.; N?rskov, J. K. J. Phys. Chem. Lett. 2016, 7, 3931. |
[117] | Takigawa, I.; Shimizu, K.-i.; Tsuda, K.; Takakusagi, S. RSC Adv. 2016, 6, 52587. |
[118] | Zhu, Q.; Zhang, F.; Huang, Y.; Xiao, H.; Zhao, L.; Zhang, X.; Song, T.; Tang, X.; Li, X.; He, G.; Chong, B.; Zhou, J.; Zhang, Y.; Zhang, B.; Cao, J.; Luo, M.; Wang, S.; Ye, G.; Zhang, W.; Chen, X.; Cong, S.; Zhou, D.; Li, H.; Li, J.; Zou, G.; Shang, W.; Jiang, J.; Luo, Y. Natl. Sci. Rev. 2022, nwac190. |
[119] | Balachandran, P. V.; Young, J.; Lookman, T.; Rondinelli, J. M. Nat. Commun. 2017, 8, 1. |
[120] | Shields, B. J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.; Alvarado, J. I. M.; Janey, J. M.; Adams, R. P.; Doyle, A. G. Nature. 2021, 590, 89. |
[121] | Raccuglia, P.; Elbert, K. C.; Adler, P. D.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature. 2016, 533, 73. |
[122] | Wang, A. Y.-T.; Murdock, R. J.; Kauwe, S. K.; Oliynyk, A. O.; Gurlo, A.; Brgoch, J.; Persson, K. A.; Sparks, T. D. Chem. Mater. 2020, 32, 4954. |
[123] | Krishnamurthy, D.; Weiland, H.; Barati Farimani, A.; Antono, E.; Green, J.; Viswanathan, V. ACS Energy Lett. 2018, 4, 187. |
[124] | De Luna, P.; Wei, J.; Bengio, Y.; Aspuru-Guzik, A.; Sargent, E. Use machine learning to find energy materials. Nature Publishing Group, 2017. |
[125] | Schmidt, J.; Marques, M. R.; Botti, S.; Marques, M. A. npj Comput. Mater. 2019, 5, 1. |
[126] | Zhang, Y.; Ling, C. Npj Comput. Mater. 2018, 4, 1. |
[127] | Trivedi, H.; Shvartsman, V. V.; Medeiros, M. S.; Pullar, R. C.; Lupascu, D. C. Npj Comput. Mater. 2018, 4, 1. |
[128] | Luo, W.; Shen, F.; Bommier, C.; Zhu, H.; Ji, X.; Hu, L. Acc. Chem. Res. 2016, 49, 231. |
[129] | Jankowski, N.; Duch, W.; Grabczewski, K. Meta-learning in computational intelligence. Springer, 2011. |
[130] | Graves, A.; Wayne, G.; Danihelka, I. arXiv preprint arXiv:1410.5401. 2014. |
[131] | Lake, B. M.; Salakhutdinov, R.; Tenenbaum, J. B. Science. 2015, 350, 1332. |
[132] | Kauwe, S. K.; Welker, T.; Sparks, T. D. Integr. Mater. Manuf. I. 2020, 9, 213. |
[133] | Ouyang, R.; Ahmetcik, E.; Carbogno, C.; Scheffler, M.; Ghiringhelli, L. M. J. Phys. Mater. 2019, 2, 024002. |
[134] | Jackson, N. E.; Bowen, A. S.; Antony, L. W.; Webb, M. A.; Vishwanath, V.; de Pablo, J. J. Sci. Adv. 2019, 5, eaav1190. |
[135] | Sutton, C.; Boley, M.; Ghiringhelli, L. M.; Rupp, M.; Vreeken, J.; Scheffler, M. Nat. Commun. 2020, 11, 1. |
[136] | Wu, W.; Sun, Q. Sci. China : Phys., Mech. Astron. 2018, 48, 58. (in Chinese) |
[136] | (吴炜, 孙强, 中国科学: 物理学力学天文学, 2018, 48, 58.) |
[137] | Wu, S.; Kondo, Y.; Kakimoto, M.-a.; Yang, B.; Yamada, H.; Kuwajima, I.; Lambard, G.; Hongo, K.; Xu, Y.; Shiomi, J. Npj Comput. Mater. 2019, 5, 1. |
[138] | Jia, W.; Wang, H.; Chen, M.; Lu, D.; Liu, J.; Lin, L.; Car, R.; Zhang, L. arXiv preprint arXiv:2005.00223. 2020, 1. |
/
〈 |
|
〉 |