收稿日期: 2022-11-23
网络出版日期: 2023-01-28
基金资助
国家自然科学基金(22176191); 国家自然科学基金(21925603)
Research Progress of Actinide Single Molecule Magnets
Received date: 2022-11-23
Online published: 2023-01-28
Supported by
National Natural Science Foundation of China(22176191); National Natural Science Foundation of China(21925603)
刘康 , 郭燕 , 于吉攀 , 石伟群 . 锕系单分子磁体研究进展[J]. 化学学报, 2023 , 81(3) : 264 -274 . DOI: 10.6023/A22110471
Single molecule magnets is a kind of magnetic materials composed of a single molecule. Its magnetism stems from the magnetic moment of a single molecule. It is expected to be applied in ultra-high density storage, quantum computer, spintronics and other fields. Actinide single molecule magnets have attracted more and more attention due to the great spin-orbit coupling effect of actinides and large radial extension of 5f electrons, and demonstrate promise for exceeding the magnetism performance of transition metal and lanthanide complexes. However, the relaxation mechanism of actinide single molecule magnets and the factors of slow magnetic behavior remain unclear. In this review, the reported actinide single molecule magnets in the last ten years are summarized. It is found that the experimental values of blocking barrier are absolutely inconsistent with the theoretical values, which limited the development of actinide single molecule magnets to some extent. Finally, the future research directions of actinide single molecule magnets are prospected.
[1] | Sessoli R.; Gatteschi D.; Caneschi A.; Novak M. A. Nature 1993, 365, 141. |
[2] | Sessoli R.; Tsai H. L.; Schake A. R.; Wang S.; Vincent J. B.; Folting K.; Gatteschi D.; Christou G.; Hendrickson D. N. J. Am. Chem. Soc. 1993, 115, 1804. |
[3] | Leuenberger M. N.; Loss D. Nature 2001, 410, 789. |
[4] | Bogani L.; Wernsdorfer W. Nat. Mater. 2008, 7, 179. |
[5] | Mannini M.; Pineider F.; Sainctavit P.; Danieli C.; Otero E.; Sciancalepore C.; Talarico A. M.; Arrio M.-A.; Cornia A.; Gatteschi D.; Sessoli R. Nat. Mater. 2009, 8, 194. |
[6] | Thiele S.; Balestro F.; Ballou R.; Klyatskaya S.; Ruben M.; Wernsdorfer W. Science 2014, 344, 1135. |
[7] | Wernsdorfer W.; Sessoli R. Science 1999, 284, 133. |
[8] | Ruiz E.; Cirera J.; Cano J.; Alvarez S.; Loose C.; Kortus J. Chem. Commun. 2008, 52. |
[9] | Gould C. A.; McClain K. R.; Reta D.; Kragskow J. G. C.; Marchiori D. A.; Lachman E.; Choi E.-S.; Analytis J. G.; Britt R. D.; Chilton N. F.; Harvey B. G.; Long J. R. Science 2022, 375, 198. |
[10] | Yu J.-P.; Liu K.; Wu Q.-Y.; Li B.; Kong X.-H.; Hu K.-Q.; Mei L.; Yuan L.-Y.; Chai Z.-F.; Shi W.-Q. Chin. J. Chem. 2021, 39, 2125. |
[11] | Wu Q.-Y.; Wang C.-Z.; Lan J.-H.; Chai Z.-F.; Shi W.-Q. Dalton Trans. 2020, 49, 15895. |
[12] | Zhu Z.-H.; Tang J.-K. Chem. Soc. Rev. 2022, 51, 9469. |
[13] | Zhu Z.-H.; Tang J.-K. Natl. Sci. Rev. 2022, 9, nwac194. |
[14] | Tian H.-Q.; Zheng L.-M. Acta Chim. Sinica 2020, 78, 34. (in Chinese) |
[14] | (田海权, 郑丽敏, 化学学报, 2020, 78, 34.) |
[15] | Ren M.; Zheng L.-M. Acta Chim. Sinica 2015, 73, 1091. (in Chinese) |
[15] | (任旻, 郑丽敏, 化学学报, 2015, 73, 1091.) |
[16] | Liddle S. T.; Slageren J. v. In Lanthanides and Actinides in Molecular Magnetism, Eds.: Layfield, R. A.; Murugesu, M., John Wiley & Sons, Weinheim, 2015, p. 315. |
[17] | Meihaus K. R.; Long J. R. Dalton Trans. 2015, 44, 2517. |
[18] | McAdams S. G.; Ariciu A.-M.; Kostopoulos A. K.; Walsh J. P. S.; Tuna F. Coord. Chem. Rev. 2017, 346, 216. |
[19] | Liddle S. T.; van Slageren J. Chem. Soc. Rev. 2015, 44, 6655. |
[20] | Bates L. F.; Hughes D. Proc. Phys. Soc. B 1954, 67, 28. |
[21] | Brodsky M. B. AIP Conf. Proc. 1972, 5, 611. |
[22] | Trzebiatowski W.; Sliwa A.; Stalinski B. Rocz. Chem. 1952, 26, 110. |
[23] | Santini P.; Lémanski R.; Erd?s P. Adv. Phys. 1999, 48, 537. |
[24] | Kindra D. R.; Evans W. J. Chem. Rev. 2014, 114, 8865. |
[25] | Rinehart J. D.; Long J. R. J. Am. Chem. Soc. 2009, 131, 12558. |
[26] | Rinehart J. D.; Meihaus K. R.; Long J. R. J. Am. Chem. Soc. 2010, 132, 7572. |
[27] | Meihaus K. R.; Rinehart J. D.; Long J. R. Inorg. Chem. 2011, 50, 8484. |
[28] | Baldoví J. J.; Cardona-Serra S.; Clemente-Juan J. M.; Coronado E.; Gaita-Ari?o A. Chem. Sci. 2013, 4, 938. |
[29] | Rinehart J. D.; Long J. R. Dalton Trans. 2012, 41, 13572. |
[30] | Apostolidis C.; Kovács A.; Walter O.; Colineau E.; Griveau J.-C.; Morgenstern A.; Rebizant J.; Caciuffo R.; Panak P. J.; Rabung T.; Schimmelpfennig B.; Perfetti M. Chem.-Eur. J. 2020, 26, 11293. |
[31] | Coutinho J. T.; Antunes M. A.; Pereira L. C. J.; Bolvin H.; Mar?alo J.; Mazzanti M.; Almeida M. Dalton Trans. 2012, 41, 13568. |
[32] | Coutinho J. T.; Antunes M. A.; Pereira L. C. J.; Mar?alo J.; Almeida M. Chem. Commun. 2014, 50, 10262. |
[33] | Antunes M. A.; Pereira L. C. J.; Santos I. C.; Mazzanti M.; Mar?alo J.; Almeida M. Inorg. Chem. 2011, 50, 9915. |
[34] | Meihaus K. R.; Minasian S. G.; Lukens W. W.; Kozimor S. A.; Shuh D. K.; Tyliszczak T.; Long J. R. J. Am. Chem. Soc. 2014, 136, 6056. |
[35] | King D. M.; Tuna F.; McMaster J.; Lewis W.; Blake A. J.; McInnes E. J. L.; Liddle S. T. Angew. Chem., Int. Ed. 2013, 52, 4921. |
[36] | Moro F.; Mills D. P.; Liddle S. T.; van?Slageren J. Angew. Chem., Int. Ed. 2013, 52, 3430. |
[37] | Pereira L. C. J.; Camp C.; Coutinho J. T.; Chatelain L.; Maldivi P.; Almeida M.; Mazzanti M. Inorg. Chem. 2014, 53, 11809. |
[38] | Goodwin C. A. P.; Tuna F.; McInnes E. J. L.; Liddle S. T.; McMaster J.; Vitorica-Yrezabal I. J.; Mills D. P. Chem.-Eur. J. 2014, 20, 14579. |
[39] | Antunes M. A.; Coutinho J. T.; Santos I. C.; Mar?alo J.; Almeida M.; Baldoví J. J.; Pereira L. C. J.; Gaita-Ari?o A.; Coronado E. Chem.-Eur. J. 2015, 21, 17817. |
[40] | Guo F.-S.; Chen Y.-C.; Tong M.-L.; Mansikkam?ki A.; Layfield R. A. Angew. Chem., Int. Ed. 2019, 58, 10163. |
[41] | Boreen M. A.; Lussier D. J.; Skeel B. A.; Lohrey T. D.; Watt F. A.; Shuh D. K.; Long J. R.; Hohloch S.; Arnold J. Inorg. Chem. 2019, 58, 16629. |
[42] | Coutinho J. T.; Perfetti M.; Baldoví J. J.; Antunes M. A.; Hallmen P. P.; Bamberger H.; Crassee I.; Orlita M.; Almeida M.; van?Slageren J.; Pereira L. C. J. Chem.-Eur. J. 2019, 25, 1758. |
[43] | Boreen M. A.; Gould C. A.; Booth C. H.; Hohloch S.; Arnold J. Dalton Trans. 2020, 49, 7938. |
[44] | Barluzzi L.; Giblin S. R.; Mansikkam?ki A.; Layfield R. A. J. Am. Chem. Soc. 2022, 144, 18229. |
[45] | Mills D. P.; Moro F.; McMaster J.; van Slageren J.; Lewis W.; Blake A. J.; Liddle S. T. Nat. Chem. 2011, 3, 454. |
[46] | Mougel V.; Chatelain L.; Pécaut J.; Caciuffo R.; Colineau E.; Griveau J.-C.; Mazzanti M. Nat. Chem. 2012, 4, 1011. |
[47] | Mougel V.; Chatelain L.; Hermle J.; Caciuffo R.; Colineau E.; Tuna F.; Magnani N.; de?Geyer A.; Pécaut J.; Mazzanti M. Angew. Chem., Int. Ed. 2014, 53, 819. |
[48] | Chatelain L.; Walsh J. P. S.; Pécaut J.; Tuna F.; Mazzanti M. Angew. Chem., Int. Ed. 2014, 53, 13434. |
[49] | Chatelain L.; Pécaut J.; Tuna F.; Mazzanti M. Chem.-Eur. J. 2015, 21, 18038. |
[50] | Chatelain L.; Tuna F.; Pécaut J.; Mazzanti M. Dalton Trans. 2017, 46, 5498. |
[51] | Guo F.-S.; Day B. M.; Chen Y.-C.; Tong M.-L.; Mansikkam?ki A.; Layfield R. A. Science 2018, 362, 1400. |
[52] | Magnani N.; Caciuffo R. Inorganics 2018, 6, 26. |
[53] | Magnani N.; Colineau E.; Eloirdi R.; Griveau J. C.; Caciuffo R.; Cornet S. M.; May I.; Sharrad C. A.; Collison D.; Winpenny R. E. P. Phys. Rev. Lett. 2010, 104, 197202. |
[54] | Magnani N.; Apostolidis C.; Morgenstern A.; Colineau E.; Griveau J.-C.; Bolvin? H.; Walter O.; Caciuffo R. Angew. Chem., Int. Ed. 2011, 50, 1696. |
[55] | Magnani N.; Colineau E.; Griveau J. C.; Apostolidis C.; Walter O.; Caciuffo R. Chem. Commun. 2014, 50, 8171. |
[56] | Jung J.; Atanasov M.; Neese F. Inorg. Chem. 2017, 56, 8802. |
[57] | Belkhiri L.; Le Guennic B.; Boucekkine A. Magnetochemistry 2019, 5, 15. |
[58] | Spivak M.; Vogiatzis K. D.; Cramer C. J.; Graaf C. d.; Gagliardi L. J. Phys. Chem. A 2017, 121, 1726. |
[59] | Gaggioli C. A.; Gagliardi L. Inorg. Chem. 2018, 57, 8098. |
[60] | Dey S.; Velmurugan G.; Rajaraman G. Dalton Trans. 2019, 48, 8976. |
[61] | Singh S. K.; Cramer C. J.; Gagliardi L. Inorg. Chem. 2020, 59, 6815. |
[62] | Dey S.; Rajaraman G. Inorg. Chem. 2022, 61, 1831. |
[63] | Dey S.; Rajaraman G. Chem. Commun. 2022, 58, 6817. |
/
〈 |
|
〉 |