纸张与纸质文物脱酸材料近期研究与展望
收稿日期: 2022-11-26
网络出版日期: 2023-02-13
基金资助
制浆造纸科学与技术教育部重点实验室开放基金资助(KF201921); 复旦大学中华古籍保护研究院研究生科学研究基金资助
Recent Research and Prospect of Deacidifying Materials for Paper and Paper-based Cultural Relics
Received date: 2022-11-26
Online published: 2023-02-13
Supported by
Foundation of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education of China(KF201921); Graduate Scientific Research Fund of the Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University
金姗姗 , 王思浓 . 纸张与纸质文物脱酸材料近期研究与展望[J]. 化学学报, 2023 , 81(3) : 309 -318 . DOI: 10.6023/A22110475
Paper and paper-based cultural relics are of great value as the main carriers for writing and preserving information. Acid-catalyzed hydrolysis is one of the most fatal reactions for paper degradation, and deacidification would effectively slow down the rate of its degradation and prolong the life time of paper. Therefore, the design and application of deacidifying materials with safety and effectiveness is the indispensable requirement for the protection of paper and paper-based cultural relics. Generally, alkaline materials, such as amino/amine compounds, magnesium/calcium hydroxides, oxides, carbonates are the mostly used deacidifying materials for their good paper compatibility, suitable alkalinity, low cost and low toxicity, which exhibit considerable paper deacidification performance. In this review, the recent research progresses of deacidifying materials on liquid phase deacidification process were reviewed, including the categories of deacidifying materials, preparation methods and the relationship between paper deacidification performance and structures of deacidifying materials, finally, the challenges and development of deacidifying materials were also discussed. For classification purpose according to chemical structure, deacidifying materials can be divided into four categories: ionic form, molecular form, micro/nano-scale form and composite form. The deacidifying materials with molecular form can significantly improve the mechanical properties of paper and show a certain deacidification effect, it is necessary to control the improvement of mechanical properties within reasonable ranges while considering the effective deacidification performance. Micro/nano-scale materials with large surface area, good penetration and high efficiency are the widely used deacidifying materials, which can achieve better deacidification effects at lower concentrations. The controlled alkalinity, high dispersion and suspension stability in solvents and uniform distribution in paper fibers of micro/nano-scale materials are highly demanded. Additionally, ionic form materials can interact with paper fibers more evenly through homogeneous deacidification process, but their alkaline reserve is relatively insufficient. And more insight is demanded into the co-existence stability of composite deacidifying materials and its contribution to paper protection.
[1] | Buchanan S. A. The Paper Conservator 1987, 11, 69. |
[2] | Sobucki W.; Drewniewska-Idziak B. Restaurator 2003, 24, 189. |
[3] | Du T. The Journal of the Library Science in Jiangxi 2009, 39, 127. (in Chinese) |
[3] | (杜涛, 江西图书馆学刊, 2009, 39, 127.) |
[4] | Wouters J. Science 2008, 322, 1196. |
[5] | Zou X.; Gurnagul N.; Uesaka T.; Bouchard J. Polym. Degrad. Stabil. 1994, 43, 393. |
[6] | Bégin P.; Deschatelets S.; Grattan D.; Gurnagul N.; Iraci J.; Kaminska E.; Woods D.; Zou X. Restaurator 1999, 20, 1. |
[7] | Zyska B. Restaurator 1996, 17, 214. |
[8] | Potthast A.; Henniges U.; Banik G. Cellulose 2008, 15, 849. |
[9] | Bulska E.; Wagner B. Comprehensive Analytical Chemistry 2004, 42, 755. |
[10] | Smith R. D. The Paper Conservator 1988, 12, 31. |
[11] | Mihram D. Restaurator 1986a, 7, 81. |
[12] | Mihram D. Restaurator 1986b, 7, 99. |
[13] | Liénardy A. Restaurator 1994, 15, 1. |
[14] | Baty J. W.; Maitland C. L.; Minter W.; Hubbe M. A.; Jordan-Mowery S. K. BioResources 2010, 5, 1955. |
[15] | Bredereck K.; Haberditzl A.; Blüher A. Restaurator 1990, 11, 165. |
[16] | Zervos S.; Alexopoulou I. Cellulose 2015, 22, 2859. |
[17] | Hubbe M. A.; Smith R. D.; Zou X.; Katuscak S.; Potthast A.; Ahn K. Bioresources 2017, 12, 4410. |
[18] | Fistos T.; Fierascu I.; Fierascu R. C. Nanomaterials 2022, 12, 207. |
[19] | Rousset E.; Ipert S.; Cheradame H. Restaurator 2004, 24, 104. |
[20] | Dupont A. L.; Lavédrine B.; Cheradame H. Polym. Degrad. Stabil. 2010, 95, 2300. |
[21] | Piovesan C.; Dupont A. L.; Fabre-Francke I.; Lavédrine B. Chéradame H. Cellulose 2014, 21, 705. |
[22] | Ferrandin-Schoffel N.; Haouas M.; Martineau-Corcos C.; Fichet O.; Dupont A. L. ACS Appl. Polym. Mater. 2020, 2, 1943. |
[23] | Zhang S. J.; Zhang X. G.; Shang W. T. Chinese J. Polym. Sci. 2015, 33, 1672. |
[24] | Isca C.; D’Avorgna S.; Graiff C.; Montanari M.; Ugozzoli F.; Predieri G. Cellulose 2016, 23, 1415. |
[25] | Isca C.; Maggio R. D.; Collado N. P.; Predieri G.; Lottici P. P. Cellulose 2018, 26, 1277. |
[26] | Souguir Z.; Dupont A. L.; D’Espinose de Lacaillerie J. B.; Lavédrine B.; Cheradame H. Biomacromolecules 2011, 12, 2082. |
[27] | Chen K. R.; Yang Y.; Li P.; Zhan Y. Z. Guangdong Chemical Industry 2017, 44, 11. (in Chinese) |
[27] | (陈珂然, 杨扬, 李萍, 詹予忠, 广东化工, 2017, 44, 11.) |
[28] | Li Y.; Shen Y. F.; Shao S.; Hou A. Q.; Chen K. R.; Zhan Y. Z. China Adhesives 2018, 27, 21. (in Chinese) |
[28] | (李妍, 申永峰, 邵帅, 侯爱芹, 陈珂然, 詹予忠, 中国胶黏剂, 2018, 27, 21.) |
[29] | Bicchieri M.; Sementilli F. M.; Sodo A. Restaurator 2000, 21, 213. |
[30] | Zappalà M. P. Restaurator 1997, 18, 12. |
[31] | Pavelka K. L. Restaurator 1990, 11, 156. |
[32] | Anguera M. C. S. Restaurator 1996, 17, 117. |
[33] | Zumbühl S.; Wuelfert S. Stud. Conserv. 2001, 46, 169. |
[34] | Poggi G.; Toccafondi N.; Melita L. N.; Knowles J. C.; Bozec L.; Giorgi R.; Baglioni P. Appl. Phys. A 2014, 114, 685. |
[35] | Poggi G.; Giorgi R.; Mirabile A.; Xing H.; Baglioni P. J. Cult. Herit. 2017, 26, 44. |
[36] | Bastone S.; Chillura Martino D. F.; Renda V.; Saladino M. L.; Poggi G.; Caponetti E. Colloid. Surface. A 2017, 513, 241. |
[37] | Wang Y. J.; Tan W.; Liu C. Y.; Fang Y. X. Adv. Mater. Res. 2011, 347, 504. |
[38] | Tan W.; Cheng L. F.; Fang Y. X. Adv. Mater. Res. 2013, 781, 2637. |
[39] | Weng J.; Zhang X.; Jia M.; Zhang J. J. Cult. Herit. 2019, 37, 137. |
[40] | Fan H. M.; Li J. H.; Mou H. Y.; Guo M. F.; Xie K. X. Paper Science and Technology 2019, 38, 6. (in Chinese) |
[40] | (樊慧明, 李嘉禾, 牟洪艳, 郭鸣凤, 谢可欣, 造纸科学与技术, 2019, 38, 6.) |
[41] | Wang S.; Yang X.; Li Y.; Gao B.; Jin S.; Yu R.; Zhang Y.; Tang Y. J. Colloid. Interf. Sci. 2022, 607, 992. |
[42] | Zhang H.; Zhang C.; Ye Z.; Wang S.; Tang Y. Micropor. Mesopor. Mat. 2019, 293, 109786. |
[43] | Huang J.; Liang G.; Lu G.; Zhang J. J. Cult. Herit. 2018, 34, 61. |
[44] | Lisuzzo L.; Cavallaro G.; Milioto S.; Lazzara G. Appl. Clay Sci. 2021, 213, 106231. |
[45] | Bicchieri M.; Valentini F.; Calcaterra A.; Talamo M. J. Anal. Methods Chem. 2017, 2017, 1. |
[46] | Male?i? J.; Kadivec M.; Kunaver M.; Skalar T.; Cigi? I. K. Herit. Sci. 2019, 7, 1. |
[47] | Sundholm F.; Tahvanainen M. Restaurator 2003, 24, 178. |
[48] | Wójciak A. Restaurator 2015, 36, 3. |
[49] | Giorgi R.; Bozzi C.; Dei L.; Gabbiani C.; Ninham B. W.; Baglioni P. Langmuir 2005, 21, 8495. |
[50] | Zhang Y. X.; Lv S. X. China Pulp & Paper 2022, 41, 45. (in Chinese) |
[50] | (张艳霞, 吕淑贤, 中国造纸, 2022, 41, 45.) |
[51] | Wang Y. J.; Fang Y. X.; Tan W.; Liu C. Y. J. Cult. Herit. 2013, 14, 16. |
[52] | Sundholm F.; Tahvanainen M. Restaurator 2004, 25, 15. |
[53] | Qi S.; Ren J. L.; Cao X.; He B.; Fan H. M. China Pulp & Paper 2022, 41, 52. (in Chinese) |
[53] | (祁石, 任俊莉, 曹显, 何贝, 樊慧明, 中国造纸, 2022, 41, 52.) |
[54] | Amornkitbamrung L.; Mohan T.; Hribernik S.; Reichel V.; Faivre D.; Gregorova A.; Engel P.; Kargl R.; Ribitsch V. RSC Adv. 2015, 5, 32950. |
[55] | Liang X. T.; Fan X. Y.; Hu D. D. Archives Science Bulletin 2017, (5), 80. (in Chinese) |
[55] | (梁兴唐, 凡晓宇, 胡道道, 档案学通讯, 2017, (5), 80.) |
[56] | He B.; Lin Q.; Chang M.; Liu C.; Fan H.; Ren J. Carbohydr. Polym. 2019, 209, 250. |
[57] | Zhang M. F.; Jiang F. Z. Restaurator 2017, 39, 1. |
/
〈 |
|
〉 |