综述

纸张与纸质文物脱酸材料近期研究与展望

  • 金姗姗 ,
  • 王思浓
展开
  • a 复旦大学图书馆 中华古籍保护研究院 上海 200433
    b 齐鲁工业大学制浆造纸科学与技术教育部重点实验室 齐鲁工业大学(山东省科学院) 济南 250353

金姗姗, 复旦大学图书馆, 中华古籍保护研究院, 在读博士研究生. 目前主要研究方向为纤维素降解动力学, 预期纸寿的评估, 以及多功能保护材料的合成.

王思浓, 复旦大学图书馆, 中华古籍保护研究院, 副研究馆员, 主要从事功能性纳米材料与纸质文物保护研究.

收稿日期: 2022-11-26

  网络出版日期: 2023-02-13

基金资助

制浆造纸科学与技术教育部重点实验室开放基金资助(KF201921); 复旦大学中华古籍保护研究院研究生科学研究基金资助

Recent Research and Prospect of Deacidifying Materials for Paper and Paper-based Cultural Relics

  • Shanshan Jin ,
  • Sinong Wang
Expand
  • a Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, Shanghai 200433, China
    b Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353

Received date: 2022-11-26

  Online published: 2023-02-13

Supported by

Foundation of Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education of China(KF201921); Graduate Scientific Research Fund of the Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University

摘要

纸张和纸质文物是书写和保存信息的主要载体, 具有重要的价值. 酸化降解是纸张目前面临的主要问题之一, 脱酸处理是减缓纸张酸化降解速率和延长纸张保存寿命的有效手段. 因此, 安全有效脱酸材料的开发与使用已成为纸张脱酸研究必不可少的方面. 通常, 氨基/胺类化合物、镁/钙等的碱性化合物因其纸张相容性好、碱性适宜、成本低且安全低毒被认为是较为优良的纸张脱酸材料. 本综述总结了近年来液相脱酸法中常用脱酸材料的研究进展, 包括脱酸材料的分类、制备方法以及纸张脱酸效果与材料结构之间的关系. 最后, 讨论了脱酸材料面临的挑战与发展.

本文引用格式

金姗姗 , 王思浓 . 纸张与纸质文物脱酸材料近期研究与展望[J]. 化学学报, 2023 , 81(3) : 309 -318 . DOI: 10.6023/A22110475

Abstract

Paper and paper-based cultural relics are of great value as the main carriers for writing and preserving information. Acid-catalyzed hydrolysis is one of the most fatal reactions for paper degradation, and deacidification would effectively slow down the rate of its degradation and prolong the life time of paper. Therefore, the design and application of deacidifying materials with safety and effectiveness is the indispensable requirement for the protection of paper and paper-based cultural relics. Generally, alkaline materials, such as amino/amine compounds, magnesium/calcium hydroxides, oxides, carbonates are the mostly used deacidifying materials for their good paper compatibility, suitable alkalinity, low cost and low toxicity, which exhibit considerable paper deacidification performance. In this review, the recent research progresses of deacidifying materials on liquid phase deacidification process were reviewed, including the categories of deacidifying materials, preparation methods and the relationship between paper deacidification performance and structures of deacidifying materials, finally, the challenges and development of deacidifying materials were also discussed. For classification purpose according to chemical structure, deacidifying materials can be divided into four categories: ionic form, molecular form, micro/nano-scale form and composite form. The deacidifying materials with molecular form can significantly improve the mechanical properties of paper and show a certain deacidification effect, it is necessary to control the improvement of mechanical properties within reasonable ranges while considering the effective deacidification performance. Micro/nano-scale materials with large surface area, good penetration and high efficiency are the widely used deacidifying materials, which can achieve better deacidification effects at lower concentrations. The controlled alkalinity, high dispersion and suspension stability in solvents and uniform distribution in paper fibers of micro/nano-scale materials are highly demanded. Additionally, ionic form materials can interact with paper fibers more evenly through homogeneous deacidification process, but their alkaline reserve is relatively insufficient. And more insight is demanded into the co-existence stability of composite deacidifying materials and its contribution to paper protection.

参考文献

[1]
Buchanan S. A. The Paper Conservator 1987, 11, 69.
[2]
Sobucki W.; Drewniewska-Idziak B. Restaurator 2003, 24, 189.
[3]
Du T. The Journal of the Library Science in Jiangxi 2009, 39, 127. (in Chinese)
[3]
(杜涛, 江西图书馆学刊, 2009, 39, 127.)
[4]
Wouters J. Science 2008, 322, 1196.
[5]
Zou X.; Gurnagul N.; Uesaka T.; Bouchard J. Polym. Degrad. Stabil. 1994, 43, 393.
[6]
Bégin P.; Deschatelets S.; Grattan D.; Gurnagul N.; Iraci J.; Kaminska E.; Woods D.; Zou X. Restaurator 1999, 20, 1.
[7]
Zyska B. Restaurator 1996, 17, 214.
[8]
Potthast A.; Henniges U.; Banik G. Cellulose 2008, 15, 849.
[9]
Bulska E.; Wagner B. Comprehensive Analytical Chemistry 2004, 42, 755.
[10]
Smith R. D. The Paper Conservator 1988, 12, 31.
[11]
Mihram D. Restaurator 1986a, 7, 81.
[12]
Mihram D. Restaurator 1986b, 7, 99.
[13]
Liénardy A. Restaurator 1994, 15, 1.
[14]
Baty J. W.; Maitland C. L.; Minter W.; Hubbe M. A.; Jordan-Mowery S. K. BioResources 2010, 5, 1955.
[15]
Bredereck K.; Haberditzl A.; Blüher A. Restaurator 1990, 11, 165.
[16]
Zervos S.; Alexopoulou I. Cellulose 2015, 22, 2859.
[17]
Hubbe M. A.; Smith R. D.; Zou X.; Katuscak S.; Potthast A.; Ahn K. Bioresources 2017, 12, 4410.
[18]
Fistos T.; Fierascu I.; Fierascu R. C. Nanomaterials 2022, 12, 207.
[19]
Rousset E.; Ipert S.; Cheradame H. Restaurator 2004, 24, 104.
[20]
Dupont A. L.; Lavédrine B.; Cheradame H. Polym. Degrad. Stabil. 2010, 95, 2300.
[21]
Piovesan C.; Dupont A. L.; Fabre-Francke I.; Lavédrine B. Chéradame H. Cellulose 2014, 21, 705.
[22]
Ferrandin-Schoffel N.; Haouas M.; Martineau-Corcos C.; Fichet O.; Dupont A. L. ACS Appl. Polym. Mater. 2020, 2, 1943.
[23]
Zhang S. J.; Zhang X. G.; Shang W. T. Chinese J. Polym. Sci. 2015, 33, 1672.
[24]
Isca C.; D’Avorgna S.; Graiff C.; Montanari M.; Ugozzoli F.; Predieri G. Cellulose 2016, 23, 1415.
[25]
Isca C.; Maggio R. D.; Collado N. P.; Predieri G.; Lottici P. P. Cellulose 2018, 26, 1277.
[26]
Souguir Z.; Dupont A. L.; D’Espinose de Lacaillerie J. B.; Lavédrine B.; Cheradame H. Biomacromolecules 2011, 12, 2082.
[27]
Chen K. R.; Yang Y.; Li P.; Zhan Y. Z. Guangdong Chemical Industry 2017, 44, 11. (in Chinese)
[27]
(陈珂然, 杨扬, 李萍, 詹予忠, 广东化工, 2017, 44, 11.)
[28]
Li Y.; Shen Y. F.; Shao S.; Hou A. Q.; Chen K. R.; Zhan Y. Z. China Adhesives 2018, 27, 21. (in Chinese)
[28]
(李妍, 申永峰, 邵帅, 侯爱芹, 陈珂然, 詹予忠, 中国胶黏剂, 2018, 27, 21.)
[29]
Bicchieri M.; Sementilli F. M.; Sodo A. Restaurator 2000, 21, 213.
[30]
Zappalà M. P. Restaurator 1997, 18, 12.
[31]
Pavelka K. L. Restaurator 1990, 11, 156.
[32]
Anguera M. C. S. Restaurator 1996, 17, 117.
[33]
Zumbühl S.; Wuelfert S. Stud. Conserv. 2001, 46, 169.
[34]
Poggi G.; Toccafondi N.; Melita L. N.; Knowles J. C.; Bozec L.; Giorgi R.; Baglioni P. Appl. Phys. A 2014, 114, 685.
[35]
Poggi G.; Giorgi R.; Mirabile A.; Xing H.; Baglioni P. J. Cult. Herit. 2017, 26, 44.
[36]
Bastone S.; Chillura Martino D. F.; Renda V.; Saladino M. L.; Poggi G.; Caponetti E. Colloid. Surface. A 2017, 513, 241.
[37]
Wang Y. J.; Tan W.; Liu C. Y.; Fang Y. X. Adv. Mater. Res. 2011, 347, 504.
[38]
Tan W.; Cheng L. F.; Fang Y. X. Adv. Mater. Res. 2013, 781, 2637.
[39]
Weng J.; Zhang X.; Jia M.; Zhang J. J. Cult. Herit. 2019, 37, 137.
[40]
Fan H. M.; Li J. H.; Mou H. Y.; Guo M. F.; Xie K. X. Paper Science and Technology 2019, 38, 6. (in Chinese)
[40]
(樊慧明, 李嘉禾, 牟洪艳, 郭鸣凤, 谢可欣, 造纸科学与技术, 2019, 38, 6.)
[41]
Wang S.; Yang X.; Li Y.; Gao B.; Jin S.; Yu R.; Zhang Y.; Tang Y. J. Colloid. Interf. Sci. 2022, 607, 992.
[42]
Zhang H.; Zhang C.; Ye Z.; Wang S.; Tang Y. Micropor. Mesopor. Mat. 2019, 293, 109786.
[43]
Huang J.; Liang G.; Lu G.; Zhang J. J. Cult. Herit. 2018, 34, 61.
[44]
Lisuzzo L.; Cavallaro G.; Milioto S.; Lazzara G. Appl. Clay Sci. 2021, 213, 106231.
[45]
Bicchieri M.; Valentini F.; Calcaterra A.; Talamo M. J. Anal. Methods Chem. 2017, 2017, 1.
[46]
Male?i? J.; Kadivec M.; Kunaver M.; Skalar T.; Cigi? I. K. Herit. Sci. 2019, 7, 1.
[47]
Sundholm F.; Tahvanainen M. Restaurator 2003, 24, 178.
[48]
Wójciak A. Restaurator 2015, 36, 3.
[49]
Giorgi R.; Bozzi C.; Dei L.; Gabbiani C.; Ninham B. W.; Baglioni P. Langmuir 2005, 21, 8495.
[50]
Zhang Y. X.; Lv S. X. China Pulp & Paper 2022, 41, 45. (in Chinese)
[50]
(张艳霞, 吕淑贤, 中国造纸, 2022, 41, 45.)
[51]
Wang Y. J.; Fang Y. X.; Tan W.; Liu C. Y. J. Cult. Herit. 2013, 14, 16.
[52]
Sundholm F.; Tahvanainen M. Restaurator 2004, 25, 15.
[53]
Qi S.; Ren J. L.; Cao X.; He B.; Fan H. M. China Pulp & Paper 2022, 41, 52. (in Chinese)
[53]
(祁石, 任俊莉, 曹显, 何贝, 樊慧明, 中国造纸, 2022, 41, 52.)
[54]
Amornkitbamrung L.; Mohan T.; Hribernik S.; Reichel V.; Faivre D.; Gregorova A.; Engel P.; Kargl R.; Ribitsch V. RSC Adv. 2015, 5, 32950.
[55]
Liang X. T.; Fan X. Y.; Hu D. D. Archives Science Bulletin 2017, (5), 80. (in Chinese)
[55]
(梁兴唐, 凡晓宇, 胡道道, 档案学通讯, 2017, (5), 80.)
[56]
He B.; Lin Q.; Chang M.; Liu C.; Fan H.; Ren J. Carbohydr. Polym. 2019, 209, 250.
[57]
Zhang M. F.; Jiang F. Z. Restaurator 2017, 39, 1.
文章导航

/