综述

后合成法构筑钛基金属有机框架及其应用

  • 齐学平 ,
  • 王飞 ,
  • 张健
展开
  • 中国科学院福建物质结构研究所 结构化学国家重点实验室 福州 350002

齐学平, 中国科学院福建物质结构研究所无机化学专业在读硕士研究生, 师从王飞研究员. 目前主要研究方向为钛基金属有机框架材料的设计、合成及应用.

王飞, 中国科学院福建物质结构研究所研究员, 博士生导师. 2012年入选“中科院青年创新促进会”会员. 2014年获得卢嘉锡青年人才奖, 同年入选中国科学院福建物质结构研究所(海西研究院)“春苗”青年人才. 2019年获福建省自然科学二等奖(排名第二). 从事金属有机框架材料研究, 在钛基金属有机框架材料、手性金属有机框架材料、沸石型金属有机框架材料的设计合成及其在气体分离、催化/光电催化、手性识别拆分等领域取得系列进展, 已在Chem. Soc. Rev., Angew. Chem., Int. Ed., ACS Materials Lett., J. Mater. Chem A.及ACS Appl. Mater. Interfaces等期刊以第一和通讯作者发表论文100多篇.

张健, 中国科学院福建物质结构研究所研究员, 博士生导师. 现任中国科学院福建物质结构研究所副所长, 结构化学国家重点实验室副主任. 2014年获国家杰出青年基金资助. 主要研究方向为团簇和多孔催化材料. 目前作为课题负责人承担有国家杰出青年基金, 中国科学院“先导B”课题, 国家自然科学基金重点项目等多项研究课题. 已在系列国际知名期刊上发表论文300多篇, 论文被他人正面引用超过2万次, H因子82.

收稿日期: 2023-02-20

  网络出版日期: 2023-03-28

基金资助

项目受国家自然科学基金(21971241)

A Post-Synthetic Method for the Construction of Titanium-Based Metal Organic Frameworks and Their Applications

  • Xueping Qi ,
  • Fei Wang ,
  • Jian Zhang
Expand
  • State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002

Received date: 2023-02-20

  Online published: 2023-03-28

Supported by

National Natural Science Foundation of China(21971241)

摘要

钛基金属有机框架(Ti-MOFs)因其优异的光催化活性成为当前材料研究领域的热点. 但由于Ti离子极高的反应活性和亲氧属性, 在反应过程中极易形成氧化物和其它竞争性的副产物, 使得Ti-MOFs的合成极具挑战性. 在MOFs发展的初期, 关于Ti-MOFs的研究便同步开展, 然而经过二十多年的发展, 已报道的Ti-MOFs只有数十种, 在上万种的MOFs中占比极其有限. 为了避免或减少钛离子副反应的发生, 通常在已知MOFs框架中引入金属Ti离子, 来定向合成Ti-MOFs, 该方法被称为后合成法(PSM), 也是构筑Ti-MOF框架的一种有效方法. 对PSM构筑Ti-MOFs的实例进行了系统的调研和总结. 首先, 依据钛离子引入方式和位置的不同, 分为离子交换、离子插入(金属节点或簇单元位置引入钛离子)和配体修饰(有机配体位置引入钛离子)三种途径, 并通过实例介绍了每种途径构筑的Ti-MOFs. 随后, 对PSM构筑的Ti-MOFs及其复合材料的设计与应用进行讨论. 最后, 对PSM构筑Ti-MOFs的现状进行总结并展望了未来的发展方向.

本文引用格式

齐学平 , 王飞 , 张健 . 后合成法构筑钛基金属有机框架及其应用[J]. 化学学报, 2023 , 81(5) : 548 -558 . DOI: 10.6023/A23020041

Abstract

Titanium-based metal organic frameworks (Ti-MOFs) have become a hot topic in current materials research due to their excellent photocatalytic activity. However, due to the extremely high reactivity and oxygenophilic properties of Ti ions, oxides and other competing by-products are easily formed during the reaction process, making the synthesis of Ti-MOFs extremely challenging. The research on Ti-MOFs was carried out simultaneously at the early stage of MOFs development, however, after more than two decades of development, only tens of Ti-MOFs have been reported, accounting for an extremely limited proportion of the tens of thousands of MOFs. In order to avoid or reduce the occurrence of titanium ion side reactions, Ti-MOFs are usually synthesized by introducing metal Ti ions into the framework of known MOFs to orientate the synthesis of Ti-MOFs, which is called post-synthetic method (PSM) and is also an effective method to construct Ti-MOF framework. The examples of PSM for constructing Ti-MOFs are systematically investigated and summarized in a timely manner. Firstly, based on the different ways and positions of titanium ion introduction, three routes are classified as ion exchange, ion insertion (introduction of titanium ion at the position of metal nodes or cluster units) and ligand modification (introduction of titanium ion at the position of organic ligands), and the Ti-MOFs constructed by each route are introduced by examples. Subsequently, the design and application of Ti-MOFs constructed by PSM and their composites are discussed. Finally, the current status of PSM-constructed Ti-MOFs is summarized and the future development direction is foreseen.

参考文献

[1]
Li, X. F.; Yan, B. Y.; Huang, W. Q.; Fu, L. P.; Sun, X. H.; Lǚ, A. H. Acta Chim. Sinica 2021, 79, 459. (in Chinese)
[1]
(李旭飞, 闫保有, 黄维秋, 浮历沛, 孙宪航, 吕爱华, 化学学报, 2021, 79, 459.)
[2]
Liu, X. L.; Xiao, Y.; Zhang, Z. Y.; You, Z. F.; Li, J. L.; Ma, D. X.; Li, B. Y. Chin. J. Chem. 2021, 39, 3462.
[3]
Yan, X.; Qu, H. M.; Chang, Y.; Duan, X. X. Acta Chim. Sinica 2022, 80, 1183. (in Chinese)
[3]
(闫续, 屈贺幂, 常烨, 段学欣, 化学学报, 2022, 80, 1183.)
[4]
Deng, H. L.; Luo, X. S.; Li, Z. H.; Zhao, J. Y.; Huang, M. H. Chin. J. Org. Chem. 2021, 41, 624. (in Chinese)
[4]
(邓汉林, 罗贤生, 李志华, 赵江颖, 黄木华, 有机化学, 2021, 41, 624.)
[5]
Mo, G. L.; Wang, Q.; Lu, W. Y.; Wang, C.; Li, P. Chin. J. Chem. 2022, 41, 335.
[6]
Huang, H. L.; Sun, Y. X.; Jia, X. M.; Xue, W. J.; Geng, C. X.; Zhao, X.; Mei, D. H.; Zhong, C. L. Chin. J. Chem. 2022, 39, 1538.
[7]
Dou, J.; Chen, Q. Chin. J. Chem. 2023, 41, 695.
[8]
Qi, Y.; Ren, S. S.; Che, Y.; Yen, J. W.; Ning, G. L. Acta Chim. Sinica 2020, 78, 613. (in Chinese)
[8]
(齐野, 任双颂, 车颖, 叶俊伟, 宁桂玲, 化学学报, 2020, 78, 613.)
[9]
Assi, H.; Mouchaham, G.; Steunou, N.; Devic, T.; Serre, C. Chem. Soc. Rev. 2017, 46, 3431.
[10]
Li, L.; Wang, X. S.; Liu, T. F.; Ye, J. H. Small Methods 2020, 4, 2000486.
[11]
Yan, Y.; Li, C. Q.; Wu, Y. H.; Gao, J. K.; Zhang, Q. C. J. Mater. Chem. A 2020, 8, 15245.
[12]
Zhu, J. J.; Li, P. Z.; Guo, W. H.; Zhao, Y. L.; Zou, R. Q. Coordin. Chem. Rev. 2018, 359, 80.
[13]
Serre, C.; Ferey, G. Inorg. Chem. 1999, 38, 5370.
[14]
Serre, C.; Groves, J. A.; Lightfoot, P.; Slawin, A. M. Z.; Wright, P. A.; Stock, N.; Bein, T.; Haouas, M.; Taulelle, F.; Ferry, G. Chem. Mater. 2006, 18, 1451.
[15]
Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Ferey, G. J. Am. Chem. Soc. 2009, 131, 10857.
[16]
Gao, J. K.; Miao, J. W.; Li, P. Z.; Teng, W. Y.; Yang, L.; Zhao, Y. L.; Liu, B.; Zhang, Q. C. Chem. Commun. 2014, 50, 3786.
[17]
Yuan, S.; Liu, T. F.; Feng, D. W.; Tian, J.; Wang, K. C.; Qin, J. S.; Zhang, Q.; Chen, Y. P.; Bosch, M.; Zou, L. F; Teat, S. J.; Dalgarno, S. J.; Zhou, H. C. Chem. Sci. 2015, 6, 3926.
[18]
Wang, S. J; Kitao, T.; Guillou, N.; Wahiduzzaman, M.; Martineau Corcos, C.; Nouar, F.; Tissot, A.; Binet, L.; Ramsahye, N.; Devautour-Vinot, S.; Kitagawa, S.; Seki, S.; Tsutsui, Y.; Briois, V.; Steunou, N.; Maurin, G.; Uemura, T.; Serre, C. Nat. Commun. 2018, 9, 1660.
[19]
Keum, Y.; Park, S.; Chen, Y. P.; Park, J. Angew. Chem., nt. Ed. 2018, 57, 14852.
[20]
Castells-Gil, J.; N, M. P.; Almora-Barrios, N.; da Silva, I.; Mateo, D.; Albero, J.; Garcia, H.; Marti-Gastaldo, C. Chem. Sci. 2019, 10, 4313.
[21]
Li, C. Q.; Xu, H.; Gao, J. K; Du, W. N.; Shangguan, L. Q.; Zhang, X.; Lin, R. B.; Wu, H.; Zhou, W.; Liu, X. F.; Yao, J. M.; Chen, B. L. J. Mater. Chem. A 2019, 7, 11928.
[22]
Wang, S. J.; Reinsch, H.; Heymans, N.; Wahiduzzaman, M.; Martineau-Corcos, C.; De Weireld, G.; Maurin, G.; Serre, C. Matter 2020, 2, 440.
[23]
Li, H. Z.; Pan, Y.; Li, Q. H.; Lin, Q. P.; Lin, D. Y.; Wang, F.; Xu, G.; Zhang, J. J. Mater. Chem. A 2023, 11, 965.
[24]
Sun, Y. Y.; Gao, M. Y.; Sun, Y. X.; Lu, D. F.; Wang, F.; Zhang, J. Inorg. Chem. 2021, 60, 13955.
[25]
Sun, Y. Y.; Lu, D. F.; Sun, Y. X.; Gao, M. Y.; Zheng, N.; Gu, C.; Wang, F.; Zhang, J. ACS Mater. Lett. 2020, 3, 64.
[26]
Salcedo-Abraira, P.; Babaryk, A. A.; Montero-Lanzuela, E.; Contreras-Almengor, O. R.; Cabrero-Antonino, M.; Grape, E. S.; Willhammar, T.; Navalon, S.; Elkaim, E.; Garcia, H.; Horcajada, P. Adv. Mater. 2021, 33, 2106627.
[27]
Yan, Y.; Li, C. Q; Wu, Y. H.; Gao, J. K.; Zhang, Q. C. J. Mater. Chem. A 2020, 8, 15245.
[28]
Zhang, L.; Fan, X.; Yi, X.; Lin, X.; Zhang, J. Acc. Chem. Res. 2022, 55, 3150.
[29]
Mason, J. A.; Darago, L. E.; Lukens, W. W. Jr.; Long, J. R. Inorg. Chem. 2015, 54, 10096.
[30]
Nguyen, N. T.; Furukawa, H.; Gandara, F.; Trickett, C. A.; Jeong, H. M.; Cordova, K. E.; Yaghi, O. M. J. Am. Chem. Soc. 2015, 137, 15394.
[31]
Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Chem.-Eur. J. 2011, 17, 6643.
[32]
Lan, G. X.; Ni, K. Y.; Veroneau, S. S.; Feng, X. Y.; Nash, G. T.; Luo, T. K.; Xu, Z. W.; Lin, W. B. J. Am. Chem. Soc. 2019, 141, 4204.
[33]
Bueken, B.; Vermoortele, F.; Vanpoucke, D. E.; Reinsch, H.; Tsou, C. C.; Valvekens, P.; De Baerdemaeker, T.; Ameloot, R.; Kirschhock, C. E.; Van Speybroeck, V.; Mayer, J. M.; De Vos, D. Angew. Chem., nt. Ed. 2015, 54, 13912.
[34]
Smolders, S.; Willhammar, T.; Krajnc, A.; Sentosun, K.; Wharmby, M. T.; Lomachenko, K. A.; Bals, S.; Mali, G.; Roeffaers, M. B. J.; De Vos, D. E.; Bueken, B. Angew. Chem., nt. Ed. 2019, 58, 9160.
[35]
Padial, N. M.; Castells-Gil, J.; Almora-Barrios, N.; Romero-Angel, M.; da Silva, I.; Barawi, M.; Garcia-Sanchez, A.; de la Pena O'Shea, V. A.; Marti-Gastaldo, C. J. Am. Chem. Soc. 2019, 141, 13124.
[36]
Nguyen, H. L.; Gándara, F.; Furukawa, H.; Doan, T. L. H.; Cordova, K. E.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 4330.
[37]
Nguyen, H. L.; Vu, T. T.; Le, D.; Doan, T. L. H.; Nguyen, V. Q.; Phan, N. T. S. ACS Catal. 2016, 7, 338.
[38]
Chang, J. N.; Li, Q.; Yan, Y.; Shi, J. W.; Zhou, J.; Lu, M.; Zhang, M.; Ding, H. M.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Angew. Chem., nt. Ed. 2022, 61, e202209289.
[39]
Zhou, J.; Li, J.; Kan, L.; Zhang, L.; Huang, Q.; Yan, Y.; Chen, Y. F.; Liu, J.; Li, S. L.; Lan, Y. Q. Nat. Commun. 2022, 13, 4681.
[40]
Cohen, S. M. Chem. Rev. 2012, 112, 970.
[41]
Mi, L. W.; Hou, H. W.; Song, Z. Y.; Han, H. Y.; Xu, H.; Fan, Y. T.; Ng, S. W. Cryst. Growth Des. 2007, 7, 2553.
[42]
Xu, M. M.; Chen, Q.; Xie, L. H.; Li, J. R. Coordin. Chem. Rev. 2020, 421, 213421.
[43]
Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M. J. Am. Chem. Soc. 2012, 134, 18082.
[44]
Lau, C. H.; Babarao, R.; Hill, M. R. Chem. Commun. 2013, 49, 3634.
[45]
Yasin, A. S.; Li, J. T.; Wu, N. Q.; Musho, T. Phys. Chem. Chem. Phys. 2016, 18, 12748.
[46]
Pratik, S. M.; Cramer, C. J. J. Phys. Chem. C 2019, 123, 19778.
[47]
Melillo, A.; Cabrero-Antonino, M.; Navalón, S.; álvaro, M.; Ferrer, B.; García, H. Appl. Catal. B: Environ. 2020, 278, 119345.
[48]
Lee, Y.; Kim, S.; Kang, J. K.; Cohen, S. M. Chem. Commun. 2015, 51, 5735.
[49]
Rasero-Almansa, A. M.; Iglesias, M.; Sánchez, F. RSC Adv. 2016, 6, 106790.
[50]
Wu, X. P.; Gagliardi, L.; Truhlar, D. G. J. Am. Chem. Soc. 2018, 140, 7904.
[51]
Zhang, Y. J.; Chen, H. J.; Pan, Y.; Zeng, X. L.; Jiang, X. F.; Long, Z.; Hou, X. D. Chem. Commun. 2019, 55, 13959.
[52]
Parnicka, P.; Lisowski, W.; Klimczuk, T.; Mikolajczyk, A.; Zaleska-Medynska, A. Appl. Catal. B: Environ. 2022, 310, 121349.
[53]
He, J. H.; Zhang, Y. J.; He, J.; Zeng, X. L.; Hou, X. D.; Long, Z. Chem. Commun. 2018, 54, 8610.
[54]
Chen, M.; Long, Z.; Dong, R. H.; Wang, L.; Zhang, J. J.; Li, S. X.; Zhao, X. H.; Hou, X. D.; Shao, H. W.; Jiang, X. Y. Small 2020, 16, 1906240.
[55]
Tu, J. P.; Zeng, X. L.; Xu, F. J.; Wu, X.; Tian, Y. F.; Hou, X. D.; Long, Z. Chem. Commun. 2017, 53, 3361.
[56]
Zhou, Y.; Liu, J. J.; Long, J. L. J. Solid State Chem. 2021, 303, 122510.
[57]
Brozek, C. K.; Dinca, M. J. Am. Chem. Soc. 2013, 135, 12886.
[58]
Zou, L. F.; Feng, D. W.; Liu, T. F.; Chen, Y. P.; Yuan, S.; Wang, K. C.; Wang, X.; Fordham, S.; Zhou, H. C. Chem. Sci. 2016, 7, 1063.
[59]
Liu, T. F.; Vermeulen, N. A.; Howarth, A. J.; Li, P.; Sarjeant, A. A.; Hupp, J. T.; Farha, O. K. Eur. J. Inorg. Chem. 2016, 2016, 4349.
[60]
Li, Z. Y.; Peters, A. W.; Platero-Prats, A. E.; Liu, J.; Kung, C. W.; Noh, H.; DeStefano, M. R.; Schweitzer, N. M.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2017, 139, 15251.
[61]
Wang, X. J.; Ma, K. K.; Goh, T.; Mian, M. R.; Xie, H. M.; Mao, H.; Duan, J.; Kirlikovali, K. O.; Stone, A.; Ray, D.; Wasielewski, M. R.; Gagliardi, L.; Farha, O. K. J. Am. Chem. Soc. 2022, 144, 12192.
[62]
Katz, M. J.; Brown, Z. J.; Colon, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Chem. Commun. 2013, 49, 9449.
[63]
Nguyen, H. G. T.; Mao, L.; Peters, A. W.; Audu, C. O.; Brown, Z. J.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Catal. Sci. Technol. 2015, 5, 4444.
[64]
Wang, J.; Zhang, J.; Peh, S. B.; Zhai, L. Z.; Ying, Y. P.; Liu, G. L.; Cheng, Y. D.; Zhao, D. ACS Appl. Energy Mater. 2018, 2, 298.
[65]
Jia, B. Y; Wu, M. J.; Zhang, H.; Zeng, Y.; Wang, G. Y. New J. Chem. 2019, 43, 16981.
[66]
Wu, C. D.; Hu, A.; Zhang, L.; Lin, W. B. J. Am. Chem. Soc. 2005, 127, 8940.
[67]
Ma, L. Q.; Falkowski, J. M.; Abney, C.; Lin, W. B. Nat. Chem. 2010, 2, 838.
[68]
Kim, J.; Kim, D. O.; Kim, D. W.; Park, J.; Jung, M. S. Inorg. Chim. Acta 2012, 390, 22.
[69]
Kim, J.; McNamara, N. D.; Her, T. H.; Hicks, J. C. ACS Appl. Mater. Interface 2013, 5, 11479.
[70]
Kim, J.; Neumann, G. T.; McNamara, N. D.; Hicks, J. C. J. Mater. Chem. A 2014, 2, 14014.
[71]
Leus, K.; Vanhaelewyn, G.; Bogaerts, T.; Liu, Y. Y.; Esquivel, D.; Callens, F.; Marin, G. B.; Van Speybroeck, V.; Vrielinck, H.; Van Der Voort, P. Catal. Today 2013, 208, 97.
[72]
Kim, J.; Ok Kim, D.; Wook Kim, D.; Sagong, K. J. Solid State Chem. 2015, 230, 110.
[73]
Huang, Z. Y.; Liu, D.; Camacho-Bunquin, J.; Zhang, G. H.; Yang, D. L.; López-Encarnación, J. M.; Xu, Y. J.; Ferrandon, M. S.; Niklas, J.; Poluektov, O. G.; Jellinek, J.; Lei, A.; Bunel, E. E.; Delferro, M. Organometallics 2017, 36, 3921.
[74]
Bravo-Sanabria, C. A.; Solano-Delgado, L. C.; Ospina-Ospina, R.; Martínez-Ortega, F.; Ramírez-Caballero, G. E. Microporous Mesoporous Mater. 2020, 305, 110359.
[75]
Sun, D.; Liu, W. J.; Qiu, M.; Zhang, Y. F.; Li, Z. H. Chem. Commun. 2015, 51, 2056.
[76]
Zeama, M.; Morsy, M.; Abdel-Azeim, S.; Abdelnaby, M.; Alloush, A.; Yamani, Z. Inorg. Chim. Acta 2020, 501, 119287.
[77]
Gao, W. Y.; Ngo, H. T.; Niu, Z.; Zhang, W. J.; Pan, Y. X.; Yang, Z. Y.; Bhethanabotla, V. R.; Joseph, B.; Aguila, B.; Ma, S. ChemSusChem 2020, 13, 6273.
[78]
Shi, L. T.; Wu, C. C.; Wang, Y.; Dou, Y. H.; Yuan, D.; Li, H.; Huang, H. W.; Zhang, Y.; Gates, I. D.; Sun, X. D.; Ma, T. Y. Adv. Funct. Mater. 2022, 32, 2202571.
[79]
Wang, A.; Zhou, Y. J.; Wang, Z. L.; Chen, M.; Sun, L. Y.; Liu, X. RSC Adv. 2016, 6, 3671.
[80]
Navarro Amador, R.; Carboni, M.; Meyer, D. RSC Adv. 2017, 7, 195.
[81]
Feng, Y.; Chen, Q.; Cao, M. J.; Ling, N.; Yao, J. F. ACS Appl. Nano Mater. 2019, 2, 5973.
[82]
Liu, T.; Tang, S.; Wei, T.; Chen, M. W.; Xie, Z. J.; Zhang, R. Q.; Liu, Y. J.; Wang, N. Cell Rep. Phys. Sci. 2022, 3, 100892.
[83]
Santiago Portillo, A.; Baldoví, H. G.; García Fernandez, M. T.; Navalón, S.; Atienzar, P.; Ferrer, B.; Alvaro, M.; Garcia, H.; Li, Z. J. Phys. Chem. C 2017, 121, 7015.
[84]
Bahmani, M.; Mowla, D.; Esmaeilzadeh, F.; Ghaedi, M. J. Solid State Chem. 2020, 286, 121304.
[85]
Bahmani, M.; Dashtian, K.; Mowla, D.; Esmaeilzadeh, F.; Ghaedi, M. Chemosphere 2021, 267, 129206.
[86]
Smith, S. J. D.; Ladewig, B. P.; Hill, A. J.; Lau, C. H.; Hill, M. R. Sci. Rep. 2015, 5, 7823.
[87]
Smith, S. J. D.; Lau, C. H.; Mardel, J. I.; Kitchin, M.; Konstas, K.; Ladewig, B. P.; Hill, M. R. J. Mater. Chem. A 2016, 4, 10627.
[88]
Avci, G.; Altintas, C.; Keskin, S. J. Phys. Chem. C 2021, 125, 17311.
[89]
Xu, T. T.; Sheng, F. M.; Wu, B.; Shehzad, M. A.; Yasmin, A.; Wang, X. X.; He, Y.; Ge, L.; Zheng, X. S.; Xu, T. W. J. Membrane Sci. 2020, 615, 118608.
[90]
Ye, G.; Qi, H.; Li, X. L.; Leng, K. Y.; Sun, Y. Y.; Xu, W. ChemPhysChem 2017, 18, 1903.
[91]
Piscopo, C. G.; Voellinger, L.; Schwarzer, M.; Polyzoidis, A.; Bo?kovi?, D.; Loebbecke, S. ChemistrySelect 2019, 4, 2806.
[92]
Nguyen, H. G. T.; Schweitzer, N. M.; Chang, C. Y.; Drake, T. L.; So, M. C.; Stair, P. C.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. ACS Catal. 2014, 4, 2496.
[93]
Santiago-Portillo, A.; Navalón, S.; álvaro, M.; García, H. J. Catal. 2018, 365, 450.
[94]
Ye, J. Y.; Gagliardi, L.; Cramer, C. J.; Truhlar, D. G. J. Catal. 2018, 360, 160.
[95]
Qin, M. H.; Shi, Y. M.; Lu, D. K.; Deng, J. J.; Shi, G. Y.; Zhou, T. S. Appl. Surf. Sci. 2022, 595, 153494.
[96]
Liu, Q. J.; Sun, N. R.; Gao, M. X.; Deng, C. H. ACS Sustainable Chem. Eng. 2018, 6, 4382.
文章导航

/