研究论文

基于温度诱导相转变共聚物和导电聚合物的自隔断超级电容器

  • 李西安 ,
  • 李孝坤
展开
  • a 河南省轨道交通智能安全工程技术研究中心 郑州 450018
    b 郑州铁路职业技术学院 郑州 450052

收稿日期: 2023-02-28

  网络出版日期: 2023-04-20

基金资助

受国家自然科学基金(52175123)

Self-partition Supercapacitor Based on Temperature-induced Phase Transition Copolymer and Conductive Polymer

  • Xian Li ,
  • Xiaokun Li
Expand
  • a Henan Intelligent Safety Engineering Research Center for Rail Transit, Zhengzhou 450018, China
    b Zhengzhou Railway Vocational Technical College, Zhengzhou 450052, China

Received date: 2023-02-28

  Online published: 2023-04-20

Supported by

National Natural Science Foundation of China(52175123)

摘要

为了提高超级电容器等储能设备的使用安全性, 扩大其实际应用领域, 本工作针对现阶段最常见的储能设备热失控问题, 提出了一种智能高效的超级电容器自我隔断策略. 通过自由基聚合将N-异丙基丙烯酰胺和丙烯酰胺共聚得到热响应聚合物, 将其溶解在氯化锂水溶液中作为电解液, 与导电聚合物电极组合后得到自隔断超级电容器. 得益于热响应电解质的温度诱导相转变特性, 该超级电容器不仅具有高效的充放电特性, 而且在器件发生热失控后能自发地切断离子转移, 阻止器件的进一步恶化, 具有88.1%的自隔断效率; 其次, 共聚物在相转变后会发生皱缩, 对光线具有明显散射并呈现出低透过率的乳白色, 这就使得人们可以通过颜色变化排查发生热失控的故障器件. 因此, 本工作制备的智能且高安全性的超级电容器将进一步为储能设备的普及应用提供新的思路.

本文引用格式

李西安 , 李孝坤 . 基于温度诱导相转变共聚物和导电聚合物的自隔断超级电容器[J]. 化学学报, 2023 , 81(5) : 511 -519 . DOI: 10.6023/A23020055

Abstract

In order to improve the safety of energy storage devices including supercapacitors and expand their practical application, this work proposes an intelligent yet efficient self-partition strategy for the most common problem of thermal runaway at this stage. Firstly, N-isopropylacrylamide (NIPAM) and acrylamide (AM) are copolymerized by free radical polymerization to obtain a thermally responsive copolymer, which is dissolved in lithium chloride aqueous solution as the electrolyte. Self-partition supercapacitors are obtained by combining this as-prepared electrolyte with conductive polymer electrodes. Benefiting from the temperature-induced phase transition characteristics of thermally responsive electrolyte, the supercapacitors not only have efficient charge-discharge characteristics but also automatically cut off the ion transfer after the thermal runaway of the device with a self-partition efficiency of 88.1%, preventing the further deterioration of the device. In addition, the copolymer will shrink after the phase change caused by thermal runaway, which scatters the light and shows milky white with low transmittance, making it possible to troubleshoot the faulty devices with thermal runaway through color change. Therefore, the intelligent and high-safety supercapacitors prepared in this work will further provide a potential reference for the popularization and application of energy storage devices.

参考文献

[1]
Zhai, Y.; Xin, G. X.; Wang, J. Q.; Zhang, B. W.; Song, J. L.; Liu, X. X. Acta Chim. Sinica 2021, 79, 1129. (in Chinese)
[1]
(翟耀, 辛国祥, 王佳琦, 张邦文, 宋金玲, 刘晓旭, 化学学报, 2021, 79, 1129.)
[2]
Zhu, J. H.; Zhang, Q.; Zhang, R. Y.; Liu, L. F. Acta Polym. Sinica 2022, 53, 1484. (in Chinese)
[2]
(朱建华, 张倩, 张瑞云, 刘丽芳, 高分子学报, 2022, 53, 1484.)
[3]
Fan, Q.; Miao, J. L.; Liu, X. H.; Zuo, X. W.; Zhang, W. X.; Tian, M. W.; Zhu, S. F.; Qu, L. J. Acta Polym. Sinca 2022, 53, 617. (in Chinese)
[3]
(范强, 苗锦雷, 刘旭华, 左杏薇, 张文枭, 田明伟, 朱士凤, 曲丽君, 高分子学报, 2022, 53, 617.)
[4]
Gao, R. Z.; Li, G. C.; Chen, Y. Q.; Zeng, Y.; Zhao, J.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2021, 79, 755. (in Chinese)
[4]
(高润洲, 李国昌, 陈轶群, 曾誉, 赵杰, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2021, 79, 755.)
[5]
Zhao, J.; Gong, J. W.; Li, Y. J.; Cheng, K.; Ye, K.; Zhu, K.; Yan, J.; Cao, D. X.; Wang, G. L. Acta Chim. Sinica 2018, 76, 107. (in Chinese)
[5]
(赵婧, 龚俊伟, 李一举, 程魁, 叶克, 朱凯, 闫俊, 曹殿学, 王贵领, 化学学报, 2018, 76, 107.)
[6]
Liu, C. X.; Yu, Y. G.; Chang, Y. Z.; Zhou, W.; Yuan, W.; Han, G. Y. Acta Polym. Sinica 2016, 3, 352. (in Chinese)
[6]
(刘翠仙, 余雅国, 常云珍, 周雯, 袁伟, 韩高义, 高分子学报, 2016, 3, 352.)
[7]
Finegan, D. P.; Scheel, M.; Robinson, J. B.; Tjaden, B.; Hunt, I.; Mason, T. J.; Millichamp, J.; Di Michiel, M.; Offer, G. J.; Hinds, G.; Brett, D. J. L.; Shearing, P. R. Nat. Commun. 2015, 6, 6924.
[8]
Zhou, H.; Parmananda, M.; Crompton, K. R.; Hladky, M. P.; Dann, M. A.; Ostanek, J. K.; Mukherjee, P. P. Energy Storage Mater. 2022, 44, 326.
[9]
Feng, X. N.; Ren, D. S.; He, X. M.; Ouyang, M. G. Joule 2020, 4, 743.
[10]
Cheng, X. L.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H. S. Adv. Energy Mater. 2018, 8, 1702184.
[11]
Jia, Z. R.; Wang, Z. P.; Wang, Q. S.; Li, X. H.; Sun, F. C. Automotive Eng. 2022, 44, 1689. (in Chinese)
[11]
(贾子润, 王震坡, 王秋诗, 黎小慧, 孙逢春, 汽车工程, 2022, 44, 1689.)
[12]
Kim, J.; Oh, J.; Lee, H. Appl. Therm. Eng. 2019, 149, 192.
[13]
Feng, X. M.; Ai, X. P.; Yang, H. X. Electrochem. Commun. 2004, 6, 1021.
[14]
Li, Y. L.; Feng, X. N.; Ren, D. S.; Ouyang, M. G.; Lu, L. G.; Han, X. B. ACS Appl. Mater. Interfaces 2019, 11, 46839.
[15]
Yuan, M. Q.; Liu, K. J. Energy Chem. 2020, 43, 58.
[16]
Zhou, Y.; Wang, S. C.; Peng, J. Q.; Tan, Y. T.; Li, C. C.; Boey, F. Y. C.; Long, Y. Joule 2020, 4, 2458.
[17]
Zhang, P. P.; Wang, J. H.; Sheng, W. B.; Wang, F. X.; Zhang, J.; Zhu, F.; Zhuang, X. D.; Jordan, R.; Schmidt, O. G.; Feng, X. L. Energ. Environ. Sci. 2018, 11, 1717.
[18]
Yang, H.; Liu, Z. Y.; Chandran, B. K.; Deng, J. Y.; Yu, J. C.; Qi, D. P.; Li, W. L.; Tang, Y. X.; Zhang, C. G.; Chen, X. D. Adv. Mater. 2015, 27, 5593.
[19]
Kang, S. K.; Ho, D. H.; Lee, C. H.; Lim, H. S.; Cho, J. H. ACS Appl. Mater. Interfaces 2020, 12, 33838.
[20]
Wu, T.; Zou, G.; Hu, J. M.; Liu, S. Y. Chem. Mater. 2009, 21, 3788.
[21]
Lee, H. Y.; Cai, Y.; Bi, S.; Liang, Y. N.; Song, Y.; Hu, X. M. ACS Appl. Mater. Interfaces 2017, 9, 6054.
[22]
Li, H.; Mcrae, L.; Firby, C. J.; Elezzabi, A. Y. Adv. Mater. 2019, 31, e1807065.
[23]
Ginting, R. T.; Ovhal, M. M.; Kang, J. W. Nano Energy 2018, 53, 650.
[24]
Li, X. H.; Liu, C.; Feng, S. P.; Fang, N. X. Joule 2019, 3, 290.
文章导航

/