连续流条件下蒽-铈协同催化的苄位碳氢键选择性氧化反应★
收稿日期: 2023-03-29
网络出版日期: 2023-05-10
基金资助
受国家自然科学基金(22125111); 受国家自然科学基金(21971163); 国家重点研发计划(2021YFA1500100); 基础研究特区计划-中国科学院上海分院; 四川省科技计划项目(2023NSFSC0097); 晨光高性能氟材料创新中心项目(SCFZ2201)
Selectively Aerobic Oxidation of Benzylic C—H Bonds Enabled by Dual Anthracene and Cerium Catalysis under Continuous-Flow Conditions★
Received date: 2023-03-29
Online published: 2023-05-10
Supported by
National Natural Science Foundation of China(22125111); National Natural Science Foundation of China(21971163); National Key R&D Program of China(2021YFA1500100); Shanghai Pilot Program for Basic Research-Chinese Academy of Sciences, Shanghai Branch; Sichuan Science and Technology Program(2023NSFSC0097); Innovation Center for Chenguang High Performance Fluorine Material Program(SCFZ2201)
徐袁利 , 潘辉 , 杨义 , 左智伟 . 连续流条件下蒽-铈协同催化的苄位碳氢键选择性氧化反应★[J]. 化学学报, 2023 , 81(5) : 435 -440 . DOI: 10.6023/A23030099
The benzyl oxidation reaction serves as a crucial functional group transformation method in the field of organic synthesis. Regrettably, traditional benzyl oxidation reactions frequently necessitate harsh conditions, such as elevated temperatures and potent oxidizing agents. In contrast, this article showcases a highly selective catalytic benzylic oxidation executed within a continuous-flow microreactor. By harnessing the previously established cerium-alcohol complex’s ligand to metal charge transfer (LMCT)-hydrogen atom transfer (HAT) activation mechanism and the anthracene-cerium synergistic catalytic system, a diverse array of aromatic ketones was synthesized from aryl alkanes with remarkable efficiency under ambient and aerobic conditions. The continuous-flow technology, endowed with unique advantages such as heightened illumination efficiency, superior gas-liquid mass transfer, repeatability, and scalability, has emerged as a powerful instrument for scaling-up photocatalytic reactions. In this process, under flow conditions, ethyl acetate solutions comprising Ce(NO3)3•6H2O, tetrabutylammonium bromide (TBABr), 9,10-dibromoanthracene (DBA), trichloroethanol (TCE), and ethylbenzene encountered and mixed with oxygen within the microreactor. Subsequently, a photocatalytic aerobic oxidation reaction occurred under visible light irradiation at room temperature, achieving complete conversion within a mere 5 min, and rapidly generated a series of aromatic ketones with good to excellent yields. Mechanistic studies indicated the paramount importance of the anthracene-derived catalyst DBA in achieving the heightened efficiency. Under visible light irradiation, the excited state DBA was initially oxidatively quenched with oxygen or peroxide species generated in the system, resulting in the formation of the DBA cationic free radical. Subsequently, the DBA cationic free radical underwent a single electron transfer (SET) process with the low-valent cerium (III) complex, consequently expediting the oxidative regeneration of the cerium (IV) catalyst and markedly boosting its catalytic efficacy. Eventually, this highly efficient catalytic system is characterized by its simplicity, mild reaction conditions, elevated selectivity, minimal waste production, and extensive applicability. Furthermore, it is effortlessly scalable and amenable to continuous production.
[1] | (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2010, 40, 102. |
[1] | (b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828. |
[1] | (c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322. |
[1] | (d) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898. |
[1] | (e) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075. |
[1] | (f) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035. |
[1] | (g) Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; Mao, E.; Millet, A.; Oakley, J. V.; Reed, N. L.; Sakai, H. A.; Seath, C. P.; MacMillan, D. W. C. Chem. Rev. 2022, 122, 1485. |
[1] | (h) Cheung, K. P. S.; Sarkar, S.; Gevorgyan, V. Chem. Rev. 2022, 122, 1543. |
[1] | (i) Holmberg-Douglas, N.; Nicewicz, D. A. Chem. Rev. 2022, 122, 1925. |
[1] | (j) Murray, P. R. D.; Cox, J. H.; Chiappini, N. D.; Roos, C. B.; McLoughlin, E. A.; Hejna, B. G.; Nguyen, S. T.; Ripberger, H. H.; Ganley, J. M.; Tsui, E.; Shin, N. Y.; Koronkiewicz, B.; Qiu, G.; Knowles, R. R. Chem. Rev. 2022, 122, 2017. |
[1] | (k) Gao, P.-P.; Xiao, W.-J.; Chen, J.-R. Chin. J. Org. Chem. 2022, 42, 3923. (in Chinese) |
[1] | (高盼盼, 肖文精, 陈加荣, 有机化学, 2022, 42, 3923.) |
[1] | (l) Han, Y.; Jiang, W.; Zhang, J.; Peng, J.; Chen, C. Chin. J. Org. Chem. 2022, 42, 266. (in Chinese) |
[1] | (韩阳, 姜为超, 张靖, 彭进松, 陈春霞, 有机化学, Chin. J. Org. Chem. 2022, 42, 266.) |
[1] | (m) Wang, D.; Wang, J.; Ma, C.; Jiang, Y.; Yu, B. Chin. J. Org. Chem. 2022, 42, 4024. (in Chinese) |
[1] | (王丹凤, 汪瑾, 马春华, 姜玉钦, 於兵, 有机化学, 2022, 42, 4024.) |
[2] | (a) Chen, M. S.; White, M. C. Science 2007, 318, 783. |
[2] | (b) McNeill, E.; Du Bois, J. Chem. Sci. 2012, 3, 1810. |
[2] | (c) Moriyama, K.; Takemura, M.; Togo, H. Org. Lett. 2012, 14, 2414. |
[2] | (d) Shen, D.; Miao, C.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2014, 16, 1108. |
[2] | (e) Liu, J.; Fan, W.; Xiong, H.; Jiang, J.; Zhan, H. Chin. J. Org. Chem. 2021, 41, 4409. (in Chinese) |
[2] | (刘建奇, 范伟伟, 熊航行, 江京耘, 詹红菊, 有机化学, 2021, 41, 4409.) |
[2] | (f) Wang, C.; Yao, Y.; Xie, J.; Wang, J.; Wang, F.; Zhang, J.; Tang, L. Chin. J. Org. Chem. 2021, 41, 370. (in Chinese) |
[2] | (王聪, 姚瑶瑶, 谢珺, 王建塔, 王飞清, 张吉泉, 汤磊, 有机化学, 2021, 41, 370.) |
[3] | (a) Liang, Y.-F.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640. |
[3] | (b) Zhang, Y.; Schilling, W.; Das, S. ChemSusChem 2019, 12, 2898. |
[3] | (c) Forchetta, M.; Valentini, F.; Conte, V.; Galloni, P.; Sabuzi, F. Catalysts 2023, 13, 220. |
[3] | (d) Jin, W.; Liu, C. Chin. J. Org. Chem. 2021, 41, 2148. (in Chinese) |
[3] | (金伟伟, 刘晨江, 有机化学, 2021, 41, 2148.) |
[4] | (a) Kuang, Y.; Cao, H.; Tang, H.; Chew, J.; Chen, W.; Shi, X.; Wu, J. Chem. Sci. 2020, 11, 8912. |
[4] | (b) Cao, H.; Kuang, Y.; Shi, X.; Wong, K. L.; Tan, B. B.; Kwan, J. M. C.; Liu, X.; Wu, J. Nat. Commun. 2020, 11, 1956. |
[4] | (c) Liu, J.; Zhao, W.; Lu, L.; Liu, Y.; Cheng, Y.; Xiao, W. Green Synth. Catal. 2021, 2, 389. |
[5] | Hu, D.; Jiang, X. Green Chem. 2022, 24, 124. |
[6] | (a) Deng, H.-P.; Zhou, Q.; Wu, J. Angew. Chem., Int. Ed. 2018, 57, 12661. |
[6] | (b) Fan, X.; Rong, J.; Wu, H.; Zhou, Q.; Deng, H.; Tan, J. D.; Xue, C.; Wu, L.; Tao, H.; Wu, J. Angew. Chem., Int. Ed. 2018, 57, 8514. |
[6] | (c) Cao, H.; Kong, D.; Yang, L.-C.; Chanmungkalakul, S.; Liu, T.; Piper, J. L.; Peng, Z.; Gao, L.; Liu, X.; Hong, X.; Wu, J. Nat. Synth. 2022, 1, 794. |
[7] | (a) Zhang, W.; Gacs, J.; Arends, I. W. C. E.; Hollmann, F. ChemCatChem 2017, 9, 3821. |
[7] | (b) Jiang, D.; Zhang, Q.; Yang, L.; Deng, Y.; Yang, B.; Liu, Y.; Zhang, C.; Fu, Z. Renew. Energy 2021, 174, 928. |
[8] | (a) Ohkubo, K.; Fukuzumi, S. Org. Lett. 2000, 2, 3647. |
[8] | (b) Ohkubo, K.; Mizushima, K.; Iwata, R.; Souma, K.; Suzuki, N.; Fukuzumi, S. Chem. Commun. 2010, 46, 601. |
[8] | (c) Lechner, R.; Kümmel, S.; K?nig, B. Photochem. Photobiol. Sci. 2010, 9, 1367. |
[9] | (a) Mühldorf, B.; Wolf, R. Chem. Commun. 2015, 51, 8425. |
[9] | (b) Mühldorf, B.; Wolf, R. Angew. Chem., Int. Ed. 2016, 55, 427. |
[10] | Cambié, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; No?l, T. Chem. Rev. 2016, 116, 10276. |
[11] | Pieber, B.; Kappe, C. O. In Organometallic Flow Chemistry, Ed.: No?l, T., Springer International Publishing, Cham, 2016, pp. 97-136. |
[12] | (a) Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. Chem. Rev. 2017, 117, 11796. |
[12] | (b) Fan, X.; Xiao, P.; Jiao, Z.; Yang, T.; Dai, X.; Xu, W.; Tan, J. D.; Cui, G.; Su, H.; Fang, W.; Wu, J. Angew. Chem., Int. Ed. 2019, 58, 12580. |
[12] | (c) Lei, Z.; Ang, H. T.; Wu, J. Org. Process Res. Dev. 2023, DOI: 10.1021/acs.oprd.2c00374. |
[12] | (d) Liu, D.; Zhu, Y.; Gu, S.; Chen, F. Chin. J. Org. Chem. 2021, 41, 1002. (in Chinese) |
[12] | (刘玎, 朱园园, 古双喜, 陈芬儿, 有机化学, 2021, 41, 1002.) |
[13] | Buglioni, L.; Raymenants, F.; Slattery, A.; Zondag, S. D. A.; No?l, T. Chem. Rev. 2022, 122, 2752. |
[14] | Laudadio, G.; Govaerts, S.; Wang, Y.; Ravelli, D.; Koolman, H. F.; Fagnoni, M.; Djuric, S. W.; No?l, T. Angew. Chem., Int. Ed. 2018, 57, 4078. |
[15] | Lesieur, M.; Genicot, C.; Pasau, P. Org. Lett. 2018, 20, 1987. |
[16] | Morrison, G.; Bannon, R.; Wharry, S.; Moody, T. S.; Mase, N.; Hattori, M.; Manyar, H.; Smyth, M. Tetrahedron Lett. 2022, 90, 153613. |
[17] | Li, C.; Xu, R.; Song, Q.; Mao, Z.; Li, J.; Yang, H.; Chen, J. Tetrahedron Lett. 2022, 98, 153818. |
[18] | Hu, A.; Guo, J.-J.; Pan, H.; Zuo, Z. Science 2018, 361, 668. |
[19] | Hu, A.; Chen, Y.; Guo, J.-J.; Yu, N.; An, Q.; Zuo, Z. J. Am. Chem. Soc. 2018, 140, 13580. |
[20] | Du, J.; Yang, X.; Wang, X.; An, Q.; He, X.; Pan, H.; Zuo, Z. Angew. Chem., Int. Ed. 2021, 60, 5370. |
[21] | An, Q.; Wang, Z.; Chen, Y.; Wang, X.; Zhang, K.; Pan, H.; Liu, W.; Zuo, Z. J. Am. Chem. Soc. 2020, 142, 6216. |
[22] | An, Q.; Xing, Y.-Y.; Pu, R.; Jia, M.; Chen, Y.; Hu, A.; Zhang, S.-Q.; Yu, N.; Du, J.; Zhang, Y.; Chen, J.; Liu, W.; Hong, X.; Zuo, Z. J. Am. Chem. Soc. 2023, 145, 359. |
[23] | Wang, Y.-H.; Yang, Q.; Walsh, P. J.; Schelter, E. J. Org. Chem. Front. 2022, 9, 2612. |
[24] | (a) Jin, Y.; Zhang, Q.; Wang, L.; Wang, X.; Meng, C.; Duan, C. Green Chem. 2021, 23, 6984. |
[24] | (b) Jin, Y.; Wang, L.; Zhang, Q.; Zhang, Y.; Liao, Q.; Duan, C. Green Chem. 2021, 23, 9406. |
[25] | Treacy, S. M.; Rovis, T. J. Am. Chem. Soc. 2021, 143, 2729. |
[26] | Schoof, S.; Güsten, H.; Von Sonntag, C. Ber. Bunsenges. Phys. Chem. 1978, 82, 1068. |
[27] | Dixon, B. G.; Schuster, G. B. J. Am. Chem. Soc. 1981, 103, 3068. |
/
〈 |
|
〉 |