研究论文

温度调控的动态湿度响应褶皱图案

  • 马天骄 ,
  • 李瑾 ,
  • 马晓东 ,
  • 姜学松
展开
  • 上海交通大学 化学化工学院 变革性分子前沿科学中心 上海 200240
庆祝《化学学报》创刊90周年.

收稿日期: 2023-04-01

  网络出版日期: 2023-05-12

基金资助

国家重点研发计划(2021YFB4001100); 国家自然科学基金(52025032); 国家自然科学基金(52103144)

Temperature-controlled Dynamic Moisture-responsive Wrinkled Patterns

  • Tianjiao Ma ,
  • Jin Li ,
  • Xiaodong Ma ,
  • Xuesong Jiang
Expand
  • School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-01

  Online published: 2023-05-12

Supported by

National Key R&D Program of China(2021YFB4001100); National Natural Science Foundation of China(52025032); National Natural Science Foundation of China(52103144)

摘要

本工作利用光响应温敏聚合物构筑了温控湿度响应褶皱图案, 并探索其响应机制与应用. 将1-乙烯基-3-蒽甲基氯化咪唑鎓(IMAN)、N-异丙基丙烯酰胺(NIPAM)与聚乙二醇甲醚甲基丙烯酸酯(OEGMA)三元共聚物P(IMAN-co-NIPAM-co-OEGMA)作为表层, 与聚二甲基硅氧烷(PDMS)基底形成双层褶皱体系. 蒽基团的光二聚交联能够使体系区域选择性起皱, 含NIPAM结构的聚合物链则赋予其温度控制的湿度响应性. 在室温、加湿条件下, 该褶皱图案消失, 其响应机制是聚合物吸湿过程中的模量降低和应力松弛; 而在较高温度下, 褶皱图案无法由湿度擦除, 这是由于顶层聚合物链疏水性增强所导致的. 这种同时具有光敏性与温度控制的湿度响应性褶皱图案, 在湿度传感、智能显示、智能窗户等领域具有潜在的应用前景.

本文引用格式

马天骄 , 李瑾 , 马晓东 , 姜学松 . 温度调控的动态湿度响应褶皱图案[J]. 化学学报, 2023 , 81(7) : 749 -756 . DOI: 10.6023/A23040108

Abstract

Here we reported temperature-controlled moisture responsive wrinkled patterns based on bilayer system, and explore its regulation mechanism and applications. The bilayer wrinkling system is comprising a copolymer P(IMAN-co-NIPAM-co-OEGMA) containing 1-vinyl-3-anthracenemethyl imidazolium chloride (IMAN), N-isopropylacrylamide (NIPAM) and poly(ethylene glycol) methyl ether methacrylate (OEGMA) as the skin layer and poly(dimethylsiloxane) (PDMS) as the substrate. After photodimerization of the AN group, the polymer network is crosslinked, and the modulus of the top film increases. According to the linear buckling theory, random wrinkles are formed under thermal treatment and subsequent cooling to room temperature owing to the mismatch in the moduli and thermal expansion coefficients between the stiff skin layer and the soft substrate. First, the photodimerization of AN group endows the system with the ability of region selective wrinkling. If the irradiation process is performed with a photomask, the exposed regions are rigid enough for wrinkles forming, while the unexposed areas are not. Furthermore, surface wrinkles caused strong light scattering while the flat surface limit it, which affects the visibility of an object. Thus, we could fabricate various images utilizing the selective wrinkled patterns. Second, the NIPAM-containing polymer chain endows the wrinkles with temperature-controlled moisture response. Under room temperature, the wrinkles can be eliminated by moisture, which is caused by the decreasing modulus and stress relaxation during absorbing moisture; while under a higher temperature, the wrinkles cannot be driven by moisture because the copolymer of top layer becomes hydrophobic, which is demonstrated by experimental results such as the laser scanning confocal microscope images. Furthermore, the wrinkled images and the transparence can be controlled by moisture and temperature during the switch between wrinkled and flat states. Besides, the poly(ethylene glycol) methyl ether methacrylate (OEGMA) is involved to tune the mechanical properties. The photosensitive and temperature- controlled moisture responsive wrinkled patterns may find potential applications in moisture sensing, smart display or smart windows.

参考文献

[1]
Bowden N.; Brittain S.; Evans A. G.; Hutchinson J. W.; Whitesides G. M. Nature 1998, 393, 146.
[2]
Chung J. Y.; Nolte A. J.; Stafford C. M. Adv. Mater. 2011, 23, 349.
[3]
Khang D. Y.; Jiang H.; Huang Y.; Rogers J. A. Science 2006, 311, 208.
[4]
Jiang H.; Khang D. Y.; Song J.; Sun Y.; Huang Y.; Rogers J. A. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 15607.
[5]
Zhou L.; Hu K.; Zhang W.; Meng G.; Yin J.; Jiang X. Natl. Sci. Rev. 2020, 7, 1247.
[6]
Hou H.; Yin J.; Jiang X. Acc. Chem. Res. 2019, 52, 1025.
[7]
Chen S.; Yan S.; Yin J.; Jiang X. Acta Polym. Sin. 2021, 52, 1245.
[8]
Rodríguez-Hernández J. Prog. Polym. Sci. 2015, 42, 1.
[9]
Tan Y. L.; Hu B. R.; Song J.; Chu Z. Y.; Wu W. J. Nano-Micro Lett. 2020, 12, 101.
[10]
Wang Q. M.; Zhao X. H. MRS Bull. 2016, 41, 115.
[11]
Kong X.; Wang X.; Chen J.; Yao Y.; Lin S. J. Funct. Polym. 2017, 30, 259.
[12]
Xu Z.; Xie X.; Shen H.; Guo Y.; Yang L.; Ge D. Acta Materiae Compositae Sinica 2021, 38, 3151.
[13]
Lee S. G.; Lee D. Y.; Lim H. S.; Lee D. H.; Lee S.; Cho K. Adv. Mater. 2010, 22, 5013.
[14]
Wang J.; Zheng Y.; Li L.; Liu E.; Zong C.; Zhao J.; Xie J.; Xu F.; Konig T. A. F.; Grenzer Saphiannikova M.; Cao Y.; Fery A.; Lu C. ACS Appl. Mater. Interfaces 2019, 11, 25595.
[15]
Xu C.; Stiubianu G. T.; Gorodetsky A. A. Science 2018, 359, 1495.
[16]
Ma T.; Bai J.; Li T.; Chen S.; Ma X.; Yin J.; Jiang X. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2114345118.
[17]
Ma T.; Zhou L.; Hua J.; Li J.; Ma X.; Qiao W.; Yin J.; Jiang X. ACS Appl. Mater. Interfaces 2022, 14, 16949.
[18]
Ma T.; Chen S.; Li J.; Yin J.; Jiang X. Mater. Horiz. 2022, 9, 2233.
[19]
Efimenko K.; Rackaitis M.; Manias E.; Vaziri A.; Mahadevan L.; Genzer J. Nat. Mater. 2005, 4, 293.
[20]
Kang J.; Wang C.; Xue Z.; Liu M.; Tan H. Appl. Phys. Lett. 2016, 109, 103503.
[21]
Huang X.; Sun Y.; Soh S. Adv. Mater. 2015, 27, 4062.
[22]
Chan E. P.; Smith E. J.; Hayward R. C.; Crosby A. J. Adv. Mater. 2008, 20, 711.
[23]
Lee H.; Lee B. P.; Messersmith P. B. Nature 2007, 448, 338.
[24]
Hou H.; Hu K.; Lin H.; Forth J.; Zhang W.; Russell T. P.; Yin J.; Jiang X. Adv. Mater. 2018, 30, 1803463.
[25]
Hou H.; Li F.; Su Z.; Yin J.; Jiang X. J. Mater. Chem. C 2017, 5, 8765.
[26]
Hou H.; Yin J.; Jiang X. Adv. Mater. 2016, 28, 9126.
[27]
Kim H. S.; Crosby A. J. Adv. Mater. 2011, 23, 4188.
[28]
Li F.; Hou H.; Yin J.; Jiang X. Sci. Adv. 2018, 4, eaar5762.
[29]
Li T.; Hu K.; Ma X.; Zhang W.; Yin J.; Jiang X. Adv. Mater. 2020, 32, 1906712.
[30]
Ma T.; Li T.; Zhou L.; Ma X.; Yin J.; Jiang X. Nat. Commun. 2020, 11, 1811.
[31]
Shou H.; Ma T.; Li T.; Chen S.; Ma X.; Yin J.; Jiang X. Chem. Eur. J. 2021, 27, 5810.
[32]
Zeng S.; Li R.; Freire S. G.; Garbellotto V. M. M.; Huang E. Y.; Smith A. T.; Hu C.; Tait W. R. T.; Bian Z.; Zheng G.; Zhang D.; Sun L. Adv. Mater. 2017, 29, 1700828.
[33]
Zhou L.; Yang L.; Liu Y.; Xu Z.; Yin J.; Ge D.; Jiang X. Adv. Optical Mater. 2020, 8, 2000234.
[34]
Zong C.; Zhao Y.; Ji H.; Han X.; Xie J.; Wang J.; Cao Y.; Jiang S.; Lu C. Angew. Chem. Int. Ed. 2016, 55, 3931.
[35]
Chen S.; Ma T.; Bai J.; Ma X.; Yin J.; Jiang X. Adv. Sci. 2020, 7, 2002372.
[36]
Li J.; Li T.; Ma X.; Su Z.; Yin J.; Jiang X. ACS Appl. Mater. Interfaces 2021, 13, 1704.
[37]
Chen S.; Hu K.; Yan S.; Ma T.; Deng X.; Zhang W.; Yin J.; Jiang X. Sci. Bull. 2022, 67, 2186.
[38]
Zhang Y.; Li T.; Ma X.; Yin J.; Jiang X. Acta Polym. Sin. 2021, 52, 61.
[39]
Mai Y. J. Funct. Polym. 2018, 31, 302.
[40]
Cakmak O.; El Tinay H. O.; Chen X.; Sahin O. Adv. Mater. Technol. 2019, 4, 1800596.
[41]
Zhang Y.; Jiang H.; Li F.; Xia Y.; Lei Y.; Jin X.; Zhang G.; Li H. J. Mater. Chem. A 2017, 5, 14604.
[42]
Han D. D.; Liu Y. Q.; Ma J. N.; Mao J. W.; Chen Z. D.; Zhang Y. L.; Sun H. B. Adv. Mater. Technol. 2018, 3, 1800258.
[43]
Ru J.; Zhu Z.; Wang Y.; Chen H.; Bian C.; Luo B.; Li D. Smart Mater. Struct. 2018, 27, 02lt01.
[44]
Sun Q.; Ayela C.; Thuau D. Adv. Mater. Interfaces 2022, 2201349.
[45]
Xue J.; Ge Y.; Liu Z.; Liu Z.; Jiang J.; Li G. ACS Appl. Mater. Interfaces 2022, 14, 10836.
[46]
Zain H. A.; Batumalay M.; Rahim H. R. A.; Yasin M.; Harun S. W. IEEE Sens. Lett. 2022, 6, 3500704.
[47]
Kumar P.; Sakla R.; Ghosh A.; Jose D. A. ACS Appl. Mater. Interfaces 2017, 9, 25600.
[48]
Lv X.; Li Y.; Li P.; Yang M. Sens. Actuators B Chem. 2009, 135, 581.
[49]
Cho M. Y.; Kim I. S.; Kim M. J.; Hyun D. E.; Koo S. M.; Sohn H.; Kim N. Y.; Kim S.; Ko S.; Oh J. M. Sensors 2022, 22, 5178.
[50]
Choi S. J.; Yu H.; Jang J. S.; Kim M. H.; Kim S. J.; Jeong H. S.; Kim I. D. Small 2018, 14, 1703934.
[51]
Borini S.; White R.; Wei D.; Astley M.; Haque S.; Spigone E.; Harris N.; Kivioja J.; Ryhanen T. ACS Nano 2013, 7, 11166.
[52]
Casalbore-Miceli G.; Yang M. J.; Li Y.; Zanelli A.; Martelli A.; Chen S.; She Y.; Camaioni N. Sens. Actuators B Chem. 2006, 114, 584.
[53]
Yeo T. L.; Sun T.; Grattan K. T. V.; Parry D.; Lade R.; Powell B. D. Sens. Actuators B Chem. 2005, 110, 148.
文章导航

/