研究论文

ZIF-8@B-CNF复合气凝胶的制备及其吸附性能研究

  • 王凯晴 ,
  • 袁硕 ,
  • 徐王东 ,
  • 霍丹 ,
  • 杨秋林 ,
  • 侯庆喜 ,
  • 于得海
展开
  • a 天津市制浆造纸重点实验室 天津科技大学轻工科学与工程学院 天津 300457
    b 山东华泰纸业股份有限公司 东营 257335
    c 生物基材料与绿色造纸国家重点实验室 齐鲁工业大学(山东省科学院) 济南 250353

收稿日期: 2023-03-06

  网络出版日期: 2023-05-15

基金资助

国家自然科学基金(22178273); 天津制浆造纸重点实验室(天津科技大学)基金(202201)

Preparation and Adsorption Properties of ZIF-8@B-CNF Composite Aerogel

  • Kaiqing Wang ,
  • Shuo Yuan ,
  • Wangdong Xu ,
  • Dan Huo ,
  • Qiulin Yang ,
  • Qingxi Hou ,
  • Dehai Yu
Expand
  • a Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
    b Shandong Huatai Paper Co., Ltd., Dongying 257335, China
    c State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Received date: 2023-03-06

  Online published: 2023-05-15

Supported by

National Natural Science Foundation of China(22178273); Foundation of Tianjin Key Laboratory of Pulp & Paper (Tianjin University of Science & Technology)(202201)

摘要

基于“纤维优先”的原则, 采用纤维素纳米纤丝(CNF)与金属有机骨架(MOF)制备复合材料. 采用1,2,3,4-丁烷四羧酸(BTCA)对CNF进行化学交联, 通过冷冻干燥处理制备气凝胶(B-CNF), 接着采用原位生长法在B-CNF表面负载沸石咪唑酯骨架结构材料(ZIF-8), 成功制备ZIF-8@B-CNF复合气凝胶, 并将其用于亚甲基蓝(MB)的吸附. 采用扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)以及Brunner-Emmet-Teller (BET)等对ZIF-8@B-CNF复合气凝胶进行了表征, 对其吸附机理进行了研究. 结果表明, ZIF-8@B-CNF复合气凝胶具有低密度、高强度等优点, 当ZIF-8负载量为50%时, 其密度低于0.1 g•cm−3, 比表面积较CNF增加了14.5倍. 该复合气凝胶对MB表现出优异的吸附能力, 由Langmuir吸附模型得出其理论最大吸附量为352.59 mg•g−1, 吸附过程更符合准二级动力学模型, 属于化学吸附.

本文引用格式

王凯晴 , 袁硕 , 徐王东 , 霍丹 , 杨秋林 , 侯庆喜 , 于得海 . ZIF-8@B-CNF复合气凝胶的制备及其吸附性能研究[J]. 化学学报, 2023 , 81(6) : 604 -612 . DOI: 10.6023/A23020049

Abstract

Based on the principle of “fiber first”, cellulose nanofibrils (CNF) and metal-organic framework (MOF) are utilized to prepare composite material. The CNF with high dispersibility was prepared via MgCl2/succinic acid hydrolysis, sodium chlorite oxidation and high-pressure homogenization, then it was chemically cross-linked with 1,2,3,4-butane tetracarboxylic acid (BTCA) and freeze-dried in a mold for 4 h to obtain the aerogel. The aerogel was fully esterified at 170 ℃ for 2~3 min to obtain aerogel B-CNF, then Zn2+ and 2-methylimidazole were synthesized in-situ on its surface, finally, ZIF-8@B-CNF composite aerogel was successfully prepared. After that, the composite aerogel was used for the adsorption of methylene blue (MB), and the effects of adsorption conditions including adsorption time, MB concentration, pH values of the solution were discussed. The ZIF-8@B-CNF composite aerogel was characterized by SEM (scanning electron microscope), XRD (X-ray diffraction), FT-IR (Fourier transform infrared spectroscopy), XPS (X-ray photoelectron spectroscopy), BET (Brunner-Emmet-Teller), etc., and the adsorption behavior and adsorption mechanism of MB were researched. The results showed that the ZIF-8@B-CNF composite aerogel had the advantages of low density and high surface area. When the loading capacity of ZIF-8 came up to 50%, the density of the ZIF-8@B-CNF was as low as less than 0.1 g•cm−3, and its surface area were increased by 14.5 times compared with that of the CNF aerogel. The ZIF-8@B-CNF composite aerogel showed excellent adsorption capacity for the MB, its theoretical maximum adsorption capacity was as high as 352.59 mg•g−1 based on the Langmuir adsorption model, demonstrating that the composite aerogel had excellent adsorption capacity. The adsorption process was in accordance with the quasi-second-order kinetic model, which belonged to the chemisorption. In addition, the adsorption behavior of MB on the composite aerogel mainly depended on the effects of electrostatic interaction, π-π stacking and hydrogen bonding.

参考文献

[1]
Li, H.; Eddaoudi, M.; O'keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.
[2]
Zhu, H.; Yang, X.; Cranston, E. D.; Zhu, S. P. Adv. Mater. 2016, 28, 7652.
[3]
Lu, L. X.; Zhao, L. Y.; Wei, Y. R.; Wang, H. H. Acta Chim. Sinica 2021, 79, 869. (in Chinese)
[3]
(吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.)
[4]
Feng, Y.; Li, Y.; Xu, M. Y.; Liu, S. C.; Yao, J. F. RSC Adv. 2016, 6, 109608.
[5]
Ahsan, M. A.; Jabbari, V.; El-Gendy, A. A.; Curry, M. L.; Noveron, J. C. Appl. Surf. Sci. 2019, 497, 143608.
[6]
Zeng, J. Y.; Wang, X. S.; Zhang, X. Z.; Zhuo, R. X. Acta Chim. Sinica 2019, 77, 1156. (in Chinese)
[6]
(曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[7]
Li, J. L.; Yuan, S.; Qin, J. S.; Pang, J. D.; Zhang, P.; Zhang, Y. M.; Huang, Y. Y.; Drake, H. F.; Liu, W. S. R.; Zhou, H. C. Angew. Chem. 2020, 132, 9405.
[8]
Cheng, P.; Wang, C. H.; Kaneti, Y. V.; Eguchi, M.; Lin, J. J.; Yamauchi, Y.; Na, J. Langmuir 2020, 36, 4231.
[9]
Zhang, Z. H.; Zhang, J. L.; Liu, J. M.; Xiong, Z. H.; Chen, X. Water, Air, Soil Pollut. 2016, 227, 471.
[10]
Li, Y. F.; Yan, X. L.; Hu, X. Y.; Feng, R.; Zhou, M.; Han, D. Z. J. Porous Mater. 2020, 27, 1109.
[11]
Wang, B.; Cote, A. P.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Nature 2008, 453, 207.
[12]
Niu, B.; Zhai, Z. Y.; Hao, X. K.; Ren, T. L.; Li, C. J. Acta Chim. Sinica 2022, 80, 946. (in Chinese)
[12]
(牛犇, 翟振宇, 郝肖柯, 任婷莉, 李从举, 化学学报, 2022, 80, 946.)
[13]
Abdollahi, B.; Najafidoust, A.; Asl, E. A.; Sillanpaa, M. Arabian J. Chem. 2021, 14, 103444.
[14]
Isogai, A. J. Wood Sci. 2013, 59, 449.
[15]
Du, H. S.; Liu, C.; Zhang, M. M.; Kong, Q. S.; Li, B.; Xian, M. Prog. Chem. 2018, 30, 448. (in Chinese)
[15]
(杜海顺, 刘超, 张苗苗, 孔庆山, 李滨, 咸漠, 化学进展, 2018, 30, 448.)
[16]
Mondal, S. Carbohydr. Polym. 2017, 163, 301.
[17]
Mo, L. T.; Pang, H. W.; Tan, Y.; Zhang, S. F.; Li, J. Z. Chem. Eng. J. 2019, 378, 122157.
[18]
Dhali, K.; Ghasemlou, M.; Daver, F.; Cass, P.; Adhikari, B. Sci. Total Environ. 2021, 775, 145871.
[19]
Zhu, L. T.; Zong, L.; Wu, X. C.; Li, M. J.; Wang, H. S.; You, J.; Li, C. X. ACS Nano 2018, 12, 4462.
[20]
Abdelhamid, H. N.; Mathew, A. P. Chem. Eng. J. 2021, 426, 131733.
[21]
Moghaddam, S. S.; Moghaddam, M. R. A.; Arami, M. J. Hazard. Mater. 2010, 175, 651.
[22]
Sachdeva, S.; Kumar, A. J. Membr. Sci. 2009, 329, 2.
[23]
El-Desoky, H. S.; Ghoneim, M. M.; El-Sheikh, R.; Zidan, N. M. J. Hazard. Mater. 2010, 175, 858.
[24]
Li, Z. J.; Zhang, X. W.; Lin, J.; Han, S.; Lei, L. C. Bioresour. Technol. 2010, 101, 4440.
[25]
Song, Y. R.; Wang, K. S.; An, G. Y.; Zhao, F. J.; Men, B.; Du, Z. X.; Wang, D. S. Acta Chim. Sinica 2022, 80, 1592. (in Chinese)
[25]
(宋亚瑞, 王凯升, 安广宇, 赵法军, 门彬, 杜昭兮, 王东升, 化学学报, 2022, 80, 1592.)
[26]
Feng, A. H.; Yu, Y.; Yu, Y.; Song, L. X. Acta Chim. Sinica 2018, 76, 757. (in Chinese)
[26]
(冯爱虎, 于洋, 于云, 宋力昕, 化学学报, 2018, 76, 757.)
[27]
Peer, F. E.; Bahramifar, N.; Younesi, H. J. Taiwan Inst. Chem. Eng. 2018, 87, 225.
[28]
Wang, S. S.; Zhang, L.; Long, C.; Li, A. M. J. Colloid Interface Sci. 2014, 428, 185.
[29]
Lu, Y.; Liu, C. Z.; Mei, C. T.; Sun, J. S.; Lee, J.; Wu, Q. L.; Hubbe, M. A.; Li, M. C. Coord. Chem. Rev. 2022, 461, 214496.
[30]
Sauperl, O.; Stana-kleinschek, K.; Ribitsch, V. Text. Res. J. 2009, 79, 780.
[31]
Ma, X. F.; Liu, C. Z.; Anderson, D. P.; Chang, P. R. Chemosphere 2016, 165, 399.
[32]
Liu, Y. P.; Hu, H. Fibers Polym. 2008, 9, 735.
[33]
He, M.; Yao, J. F.; Liu, Q.; Wang, K.; Chen, F. Y.; Wang, H. T. Microporous Mesoporous Mater. 2014, 184, 55.
[34]
Maiti, S.; Jayaramudu, J.; Das, K.; Reddy, S. M.; Sadiku, R.; Ray, S. S.; Liu, D. G. Carbohydr. Polym. 2013, 98, 562.
[35]
Xu, S.; Huo, D.; Wang, K. Q.; Yang, Q. L.; Hou, Q. X.; Zhang, F. S. Carbohydr. Polym. 2021, 266, 118118.
[36]
Meng, W. Y.; Wang, S. J.; Lv, H. F.; Wang, Z. X.; Han, X. W.; Zhou, Z. J.; Pu, J. W. Bioresources 2022, 17, 2615.
[37]
Zhang, S. H.; Liu, Y.; Li, D.; Wang, Q.; Ran, F. Applied Surface Science 2020, 505, 144533.
[38]
Ahmad, R.; Ansari, K. Process Biochem. 2021, 108, 90.
[39]
Do, N. H. N.; Truong, B. Y.; Nguyen, P. T. X.; Le, K. A.; Duong, H. M.; Le, P. K. Sep. Purif. Technol. 2022, 283, 120200.
[40]
El Haouti, R.; Ouachtak, H.; El Guerdaoui, A.; Amedlous, A.; Amaterz, E.; Haounati, R.; Addi, A. A.; Akbal, F.; El Alem, N.; Taha, M. L. J. Mol. Liq. 2019, 290, 111139.
[41]
Chen, W. J.; Ma, H. Z.; Ma, H. Z. Int. J. Biol. Macromol. 2020, 158, 1342.
[42]
Zhang, Q. L.; Cheng, Y. L.; Fang, C. Q.; Shi, J. Y.; Chen, J.; Han, H. Z. J. Solid State Chem. 2021, 302, 122361.
[43]
Chen, W. J.; Ma, H. Z.; Xing, B. S. Int. J. Biol. Macromol. 2020, 158, 1342.
[44]
Abuzerr, S.; Darwish, M.; Mahvi, A. H. Water Sci. Technol. 2018, 2, 534.
[45]
Shi, Y. W.; Song, G. B.; Li, A. Q.; Wang, J.; Wang, H. A.; Sun, Y.; Ding, G. H. Colloids Surf., A 2022, 641, 128595.
[46]
Zhang, A. J.; Shan, F. J.; Ji, X. Y.; Chen, Y. Q.; Zhao, Y.; Yv, J. New Chem. Mater. 2023, 51, 233. (in Chinese)
[46]
(张爱佳, 单凤君, 纪馨越, 陈玥琪, 赵宇, 喻靓, 化工新型材料, 2023, 51, 233.)
[47]
Chang, N.; Zhang, H.; Shi, M. S.; Li, J.; Yin, C. J.; Wang, H. T.; Wang, L. Microporous Mesoporous Mater. 2018, 266, 47.
[48]
Dai, F. L.; Guo, J. H.; He, Y. F.; Song, P. F.; Wang, R. M. Clay Minerals 2021, 56, 99.
[49]
Zhang, Q. L.; Cheng, Y. L.; Fang, C. Q.; Shi, J. Y.; Chen, J.; Han, H. Z. J. Solid State Chem. 2021, 299, 122190.
[50]
Zhang, H.; Zhao, M.; Yang, Y.; Lin, Y. S. Microporous Mesoporous Mater. 2019, 288, 109568.
[51]
Liang, Y. X.; Li, H. B.; Li, X. T.; Zhang, Q. Y.; Fei, J. Y.; Li, S. M.; Chen, S. Ecotoxicol. Environ. Saf. 2022, 113450.
[52]
Karami, A.; Shomal, R.; Sabouni, R.; Al-Sayah, M. H.; Aidan, A. Energ. 2022, 15, 4642.
[53]
Nazir, M. A.; Najam, T.; Zarin, K.; Shahzad, K.; Javed, M. S.; Jamshaid, M.; Bashir, M. A.; Shah, S. S. A.; Rehman, A. U. Int. J. Environ. Anal. Chem. 2021, 3, 1931855.
[54]
Foo, K. Y.; Hameed, B. H. Chem. Eng. J. 2010, 156, 2.
[55]
Iftekhar, S.; Ramasamy, D. L.; Srivastava, V.; Asif, M. B.; Sillanpaa, M. Chemosphere 2018, 204, 413.
[56]
Febrianto, J.; Kosasih, A. N.; Sunarso, J.; Ju, Y. H.; Indraswati, N.; Ismadji, S. J. Hazard. Mater. 2009, 162, 616.
[57]
Qiu, H.; Lv, L.; Pan, B. C.; Zhang, Q. J.; Zhang, W. M.; Zhang, Q. X. J. Zhejiang Univ.-Sci. A 2009, 10, 716.
文章导航

/