电化学条件下α,α,α-三卤(氯, 溴)甲基酮类化合物的选择性脱卤反应研究
收稿日期: 2023-03-10
网络出版日期: 2023-05-15
基金资助
新疆维吾尔自治区自然科学基金(2022D01A207); 国家自然科学基金(地区基金)项目(22161046)
Research on Selective Dehalogenation of α,α,α-Trihalogen (Chloro, Bromo) methyl Ketones Under Electrochemical Conditions
Received date: 2023-03-10
Online published: 2023-05-15
Supported by
Natural Science Foundation of Xinjiang Uygur Autonomous Region of China(2022D01A207); National Natural Science Foundation of China(22161046)
α,α-二卤(氯, 溴)甲基酮类化合物是关键的有机合成原料和最有价值的中间体之一. 本工作研究了电化学条件下α,α,α-三卤甲基酮类化合物的选择性脱卤反应. 室温下, 以铂片作为电极、1,2-二氯乙烷(或乙腈)为溶剂、n-Bu4NHSO4 (或四丁基氟化铵, TBAF, 0.5 equiv.)为电解质, 对α,α,α-三卤甲基酮类化合物进行电化学反应2~7.5 h, 得到相应α,α-二卤甲基酮, 分离产率高达92%. 此反应条件温和、底物普适性广、官能团兼容性好, 为制备α,α-二卤甲基酮提供了一种高效且经济的克级制备方法.
坎比努尔?努尔买买提 , 王超 , 罗时玮 , 阿布都热西提?阿布力克木 . 电化学条件下α,α,α-三卤(氯, 溴)甲基酮类化合物的选择性脱卤反应研究[J]. 化学学报, 2023 , 81(6) : 582 -587 . DOI: 10.6023/A23030075
The regulation of reaction to efficient and highly selective transformation into distinct valuable molecules separately from the same materials is a remarkable fundamental process in organic synthesis. Selective halogenation and dehalogenation could greatly benefit as organohalogen compounds are versatile building blocks, key intermediates and pharmaceutically essential molecules. α,α-Dihalomethyl ketones have many unique biological and organic synthetic properties. They are valuable structural frameworks in natural products, pharmaceuticals, agrochemicals and organic synthesis. α,α-Dihalomethyl ketones are one of the most important intermediates in organic synthesis. Electrochemistry has become a powerful tool in organic synthesis to avoid the use of expensive and toxic oxidants or reductants to reduce the production of harmful and toxic by-products. Therefore, in this paper, the selective dehalogenation of α,α,α-trihalogen (chloro, bromo) methyl ketones under electrochemical conditions was studied, and 17 kinds of α,α-dibromomethyl ketones and 17 kinds of α,α-dichloromethyl ketones were prepared with the highest yield of 92%. The reaction has the advantages of mild conditions, simple operation and high tolerance of functional groups. The typical procedure is as follows: the electrolysis was carried out in an undivided electrolytic cell, with a platinum anode (10 mm×10 mm×0.2 mm), and a platinum cathode (10 mm×10 mm×0.2 mm). α,α,α-Trihalomethyl ketones (0.5 mmol, 1.0 equiv.) and electrolyte (n-Bu4NHSO4 or tetrabutylammonium fluoride, 0.25 mmol, 0.5 equiv.) were dissolved in 5 mL solvent (ClCH₂CH₂Cl or CH3CN). The reaction mixture was electrolyzed under a constant current of 10 mA and at room temperature until the complete consumption of starting material as monitored by TLC or NMR. After the reaction, EtOAc (10 mL×3) was added, and then washed with water (10 mL×3) and then with brine (10 mL). The organic fraction was dried and concentrated with anhydrous MgSO4. The residue was purified by silica gel chromatography to give the dehalogenated product.
[1] | Zheng, Z. B.; Han, B. B.; Cheng, P. Tetrahedron 2014, 70, 9814. |
[2] | Tu, D. W.; Luo, J.; Jiang, W. G.; Tang, Q. Tetrahedron Lett. 2021, 81, 153335. |
[3] | Madabhushi, S.; Jillella, R.; Mallu, K. K. R.; Godala, K. R.; Vangipuram, V. S. Tetrahedron Lett. 2013, 54, 3993. |
[4] | Chelucci, G. Chem. Rev. 2012, 112, 1344. |
[5] | Jiang, J.; Zou, H.; Dong, Q.; Wang, R.; Lu, L.; Zhu, Y.; He, W. J. Org. Chem. 2015, 81, 51. |
[6] | Li, W.; Li, J.; DeVincentis, D.; Mansour, T. S. Tetrahedron Lett. 2004, 45, 1071. |
[7] | Syam, K. U.; Shanmugapriya, D.; Shankar, R.; Satyanarayana, G.; Dahanukar, V.; Vembu, N. Synlett 2008, 19, 2945. |
[8] | (a) Finck, L.; Brals, J.; Pavuluri, B.; Gallou, F.; Handa, S. J. Org. Chem. 2018, 83, 7366. |
[8] | (b) Wang, Y. B.; Chen, F.; Li, M.; Bu, Q. Q.; Du, Z. H.; Liu, J. C.; Dai, B.; Liu, N. Green Chem. 2023, 25, 1191. |
[9] | (a) Li, Y. M.; Mou, T.; Lu, L. L.; Jiang, X. F. Chem. Commun. 2019, 55, 14299. |
[9] | (b) Xiang, J. C.; Wang, J. W.; Yuan, P.; Ma, J. T.; Wu, A. X.; Liao, Z. X. J. Org. Chem. 2022, 87, 15101. |
[10] | (a) Latham, J.; Brandenburger, E.; Shepherd, S. A.; Menon, B.; Micklefield, J. Chem. Rev. 2018, 118, 232. |
[10] | (b) Touqeer, S.; Senatore, R.; Malik, M.; Urban, E.; Pace, V. Adv. Synth. Catal. 2020, 362, 5056. |
[11] | (a) Saikia, I.; Borah, A. J.; Phukan, P. Chem. Rev. 2016, 116, 6837. |
[11] | (b) Abulipizi, G.; Hasimujiang, B.; Rexit, A. A. Heterocycles 2021, 102, 318. |
[12] | (a) Arora, L.; Prakash, R.; Pundeer, R. Synth. Commun. 2019, 49, 1486. |
[12] | (b) Zhang, Z. L.; Yang, J. S.; Wu, K. R.; Yu, R. J.; Bu, J. P.; Huang, Z. J.; Li, S. K.; Ma, X. T. Tetrahedron Lett. 2022, 88, 153575. |
[13] | Diwu, Z.; Beachdel, C.; Klaubert, D. H. Tetrahedron Lett. 1998, 39, 4987. |
[14] | Liu, Y. Y.; Xiong, J.; Wei, L.; Wan, J. P. Adv. Synth. Catal. 2020, 362, 877. |
[15] | Rather, S. A.; Kumar, A.; Ahmed, Q. N. Chem. Commun. 2019, 55, 4511. |
[16] | Chen, Z.; Zhou, B.; Cai, H.; Zhu, W.; Zou, X. Green Chem. 2009, 11, 275. |
[17] | Conte, V.; Floris, B.; Galloni, P.; Silvagni, A. Adv. Synth. Catal. 2005, 347, 1341. |
[18] | Gallo, R. D. C.; Ahmad, A.; Metzker, G.; Burtoloso, A. C. B. Chem. Eur. J. 2017, 23, 16980. |
[19] | Juneja, S. K.; Choudhary, D.; Paul, S.; Gupta, R. Synth. Commun. 2006, 36, 2877. |
[20] | Paul, S.; Gupta, V.; Gupta, R.; Loupy, A. Tetrahedron Lett. 2003, 44, 439. |
[21] | Pandit, P.; Gayen, K. S.; Khamarui, S.; Chatterjee, N.; Maiti, D. K. Chem. Commun. 2011, 47, 6933. |
[22] | Nobuta, T.; Hirashima, S.; Tada, N.; Miura, T.; Itoh, A. Tetrahedron Lett. 2010, 51, 4576. |
[23] | Wang, J. Y.; Jiang, Q.; Guo, C. C. Synth. Commun. 2014, 44, 3130. |
[24] | Yadav, L.; Chawla, R.; Singh, A. Synlett 2013, 24, 1558. |
[25] | Imanishi, T.; Fujiwara, Y.; Sawama, Y.; Monguchi, Y.; Sajiki, H. Adv. Synth. Catal. 2012, 354, 771. |
[26] | Rafael, D. H.; Ivann, Z. G.; Horacio, O. F.; Moise, R. O. ChemistrySelect 2017, 2, 10067. |
[27] | Moises, A. R. R.; Ivann, Z. G.; Horacio, O. F.; Moises, R. O. J. Org. Chem. 2016, 81, 9515. |
[28] | Wang, H.; Zheng, M. X.; Guo, H. M.; Huang, G. Z.; Cheng, Z.; Rexit, A. A. Eur. J. Org. Chem. 2020, 41, 6455. |
[29] | Yang, Y.; Hasimujiang, B.; Rexit, A. A. Chin. J. Org. Chem. 2019, 39, 727. (in Chinese) |
[29] | (杨莹, 哈斯木江?巴拉提, 阿布都热西提?阿布力克木, 有机化学, 2019, 39, 727.) |
[30] | Essa, A. H.; Lerrick, R. I.; Tuna, F.; Harrington, R. W.; Clegga, W.; Hall, M. J. Chem. Commun. 2013, 49, 2756. |
[31] | (a) Liu, Y. J.; Wang, Z. C.; Meng, J. P.; Li, C.; Sun, K. Chin. J. Org. Chem. 2022, 42, 100. (in Chinese) |
[31] | (刘颖杰, 王智传, 孟建萍, 李晨, 孙凯, 有机化学, 2022, 42, 100.) |
[31] | (b) Yang, G.; Wang, Y. W.; Qiu, Y. A. Chin. J. Org. Chem. 2021, 41, 3935. (in Chinese) |
[31] | (杨光, 王衍伟, 仇友爱, 有机化学, 2021, 41, 3935.) |
[32] | (a) Yuan, Y.; Lei, A. W. Acc. Chem. Res. 2019, 52, 3309. |
[32] | (b) Wang, Z. H.; Ma, C.; Fang, P.; Xu, H. C.; Mei, T. S. Acta Chim. Sinica 2022, 80, 1115. (in Chinese) |
[32] | (王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115.) |
[33] | Sun, K.; Lei, J.; Liu, Y.; Liu, B.; Chen, N. Adv. Synth. Catal. 2020, 362, 3709. |
[34] | (a) Yang, Q. L.; Wang, X. Y.; Weng, X. J.; Yang, X.; Xu, X. T.; Tong, X. F.; Mei, T. S. Acta Chim. Sinica 2019, 77, 866. (in Chinese) |
[34] | (杨启亮, 王向阳, 翁信军, 杨祥, 徐学涛, 童晓峰, 梅天胜, 化学学报, 2019, 77, 866 ) |
[34] | (b) Li, X. Y.; Tao, P. F.; Cheng, Y. Y.; Hu, Q.; Huang, W. J.; Li, Y.; Luo, Z. H.; Huang, G. B. Chin. J. Org. Chem. 2022, 42, 4169. (in Chinese) |
[34] | (李秀英, 陶萍芳, 程泳渝, 胡琼, 黄伟娟, 李芸, 罗志辉, 黄国保, 有机化学, 2022, 42, 4169.) |
[35] | Meng, X. T.; Zhang, Y.; Luo, J. Y.; Wang, F.; Cao, X. J.; Huang, S. L. Org. Lett. 2020, 22, 1169. |
[36] | Wang, D.; Wan, Z. H.; Zhang, H.; Lei, A. W. Adv. Synth. Catal. 2020, 363, 1022. |
[37] | Box, J. R.; Atkins, A. P.; Lennox, A. J. J. Chem. Sci. 2021, 12, 10252. |
[38] | Li, Z. B.; Sun, Q.; Qian, P.; Hu, K. F.; Zha, Z. G.; Wang, Z. Y. Chin Chem. Lett. 2020, 31, 1855. |
[39] | Zhou, B.; He, Y. J.; Tao, Y. F.; Liu, L. X.; Hu, M.; Chang, Z. H.; Du, G. B. Green Chem. 2022, 24, 2859. |
/
〈 |
|
〉 |