综述

多聚腺嘌呤DNA探针及其生物传感应用

  • 李兰英 ,
  • 陶晴 ,
  • 闻艳丽 ,
  • 王乐乐 ,
  • 郭瑞妍 ,
  • 刘刚 ,
  • 左小磊
展开
  • a 上海市计量测试技术研究院 国家市场监督管理总局生物分析计量溯源重点实验室 上海 201203
    b 上海交通大学医学院分子医学研究院 上海 200127

李兰英, 上海市计量测试技术研究院高级工程师, 主要从事基于polyA探针的生物传感器研究, 主持完成科研项目3项, 主持和参与省部级以上科研课题6项, 在国内外期刊上发表论文20余篇, 包含ACS Appl. Mater. Inter., Biosens. Bioelectron., Anal. Chem.等, 获得发明专利授权10余项.

刘刚, 上海市计量测试技术研究院教授级高工, 研究方向生物标准物质、生物传感方法. 美国国家标准化技术研究院(National Institute of Standard and Technology)访问学者, 获得上海市青年拔尖人才计划资助, 曾获上海市科技进步二等奖, 研发国家有证标准物质30余项, 发表论文50余篇, 其中包含ACS Appl. Mater. Inter., Biosens. Bioelectron., Anal. Chem.等, 获得发明专利授权20余项.

左小磊, 上海交通大学医学院分子医学研究院研究员, 博士生导师, 国家杰出青年科学基金获得者、国家科技部重点专项项目负责人、教育部长江学者奖励计划青年项目获得者、基金委优秀青年科学基金获得者. 曾获得中国分析测试协会一等奖(CAIA奖)、中科院百人计划等. 长期从事框架核酸、生物传感、DNA存储等领域的研究. 在Nature Nanotechnology、Nature Biomedical Engineering、Nature Protocols、Chem. Rev.、JACS, Angew. Chem. Int. Ed.等学术期刊上发表论文150余篇, 论文SCI他引10000余次.

庆祝《化学学报》创刊90周年.

收稿日期: 2023-04-08

  网络出版日期: 2023-06-01

基金资助

国家质量基础设施体系专项(2021YFF0600705); 国家自然科学基金(22074093); 上海市青年科技英才扬帆计划(21YF1459500)

Poly-adenine-based DNA Probes and Their Applications in Biosensors

  • Lanying Li ,
  • Qing Tao ,
  • Yanli Wen ,
  • Lele Wang ,
  • Ruiyan Guo ,
  • Gang Liu ,
  • Xiaolei Zuo
Expand
  • a Key Laboratory of Bioanalysis and Metrology for State Market Regulation, Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
    b Institute of Molecular Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-08

  Online published: 2023-06-01

Supported by

National Quality Infrastructure Program of China(2021YFF0600705); National Natural Science Foundation of China(22074093); Shanghai Sailing Program(21YF1459500)

摘要

与传统的巯基DNA探针相比, 多聚腺嘌呤DNA探针(polyA DNA探针)无需特别化学修饰, 具有合成简单、成本低、稳定性好等优点, 利用自身polyA嵌段与金的相互作用即可达到捕获探针在金表面的紧凑和有序自组装的目的, 实现了识别和探针固定功能的一体化, 在生物传感领域受到广泛关注. 本综述首先介绍了polyA DNA探针与金相互作用机理研究, 随后分别介绍了polyA DNA探针在比色、荧光、表面增强拉曼散射和电化学生物传感中的研究进展, 并探讨了polyA DNA探针在生物传感领域面临的机遇和挑战, 以期为食品安全、环境监控、生物医学等领域的进一步发展提供参考.

本文引用格式

李兰英 , 陶晴 , 闻艳丽 , 王乐乐 , 郭瑞妍 , 刘刚 , 左小磊 . 多聚腺嘌呤DNA探针及其生物传感应用[J]. 化学学报, 2023 , 81(6) : 681 -690 . DOI: 10.6023/A23040121

Abstract

Compared to traditional thiolated DNA probes, poly-adenine-based DNA probes (polyA DNA probes) are free of special chemical modifications, and thus exhibit unique advantages of easy synthesis, low economic cost, and excellent stability. Using their intrinsic polyA fragments, polyA DNA probes are combined onto the gold surface to form a compact and ordered monolayer with both anchoring and recognition capabilities. As a result, polyA DNA probes have attracted numerous research interests in biosensing. In this review, we first presented the mechanism of interaction between polyA DNA probes and the gold surface and then reviewed the applications of the polyA DNA probes in the development of biosensors, including colorimetric biosensors, fluorescence biosensors, surface-enhanced Raman scattering (SERS) biosensors, and electrochemical biosensors. We concluded with a discussion of the opportunities and challenges for polyA DNA probes and expected this review to be informative for the development of biosensors in food safety, environmental monitoring, and biomedicine.

参考文献

[1]
Chi, J.; Li, J.; Ren, S.; Su, S.; Wang, L. Acta Chim. Sinica 2019, 77, 1230. (in Chinese)
[1]
(迟景元, 李晶, 任少康, 苏邵, 汪联辉, 化学学报, 2019, 77, 1230.)
[2]
Yin, F.; Zhao, H.; Lu, S.; Shen, J.; Li, M.; Mao, X.; Li, F.; Shi, J.; Li, J.; Dong, B.; Xue, W.; Zuo, X.; Yang, X.; Fan, C. Nat. Nanotechnol. 2023, https://doi.org/10.1038/s41565-023-01348-9.
[3]
Li, F.; Li, J.; Dong, B.; Wang, F.; Fan, C.; Zuo, X. Chem. Soc. Rev. 2021, 50, 5650.
[4]
Zhang, Y.; Mao, X.; Li, F.; Li, M.; Jing, X.; Ge, Z.; Wang, L.; Liu, K.; Zhang, H.; Fan, C.; Zuo, X. Angew. Chem. Int. Ed. 2020, 59, 4892.
[5]
Li, F.; Mao, X.; Li, F.; Li, M.; Shen, J.; Ge, Z.; Fan, C.; Zuo, X. J. Am. Chem. Soc. 2020, 142, 9975.
[6]
Li, L.; Wang, L.; Xu, Q.; Xu, L.; Liang, W.; Li, Y.; Ding, M.; Aldalbahi, A.; Ge, Z.; Wang, L.; Yan, J.; Lu, N.; Li, J.; Wen, Y.; Liu, G. ACS Appl. Mater. Interfaces 2018, 10, 6895.
[7]
Lao, R.; Song, S.; Wu, H.; Wang, L.; Zhang, Z.; He, L.; Fan, C. Anal. Chem. 2005, 77, 6475.
[8]
Lu, N.; Pei, H.; Ge, Z.; Simmons, C. R.; Yan, H.; Fan, C. J. Am. Chem. Soc. 2012, 134, 13148.
[9]
Chen, P.; Pan, D.; Fan, C.; Chen, J.; Huang, K.; Wang, D.; Zhang, H.; Li, Y.; Feng, G.; Liang, P.; He, L.; Shi, Y. Nat. Nanotechnol. 2011, 6, 639.
[10]
Liu, G.; Lao, R.; Xu, L.; Xu, Q.; Li, L.; Zhang, M.; Shen, H.; Mathur, S.; Fan, C.; Song, S. Sensors-basel 2011, 11, 8018.
[11]
Fan, C.; Plaxco, K. W.; Heeger, A. J. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 9134.
[12]
Song, P.; Shen, J.; Ye, D.; Dong, B.; Wang, F.; Pei, H.; Wang, J.; Shi, J.; Wang, L.; Xue, W.; Huang, Y.; Huang, G.; Zuo, X.; Fan, C. Nat. Commun. 2020, 11, 838.
[13]
Zhang, J.; Wang, L.; Pan, D.; Song, S.; Fan, C. Chem. Commun. (Camb.) 2007, 1154.
[14]
Ye, D.; Zuo, X.; Fan, C. Annu. Rev. Anal. Chem. 2018, 11, 171.
[15]
Liu, G.; Wan, Y.; Gau, V.; Zhang, J.; Wang, L.; Song, S.; Fan, C. J. Am. Chem. Soc. 2008, 130, 6820.
[16]
Wen, Y.; Pei, H.; Shen, Y.; Xi, J.; Lin, M.; Lu, N.; Shen, X.; Li, J.; Fan, C. Sci. Rep. 2012, 2, 867.
[17]
Wen, Y.; Wang, L.; Xu, L.; Li, L.; Ren, S.; Cao, C.; Jia, N.; Aldalbahi, A.; Song, S.; Shi, J.; Xia, J.; Liu, G.; Zuo, X. Analyst 2016, 141, 5304.
[18]
Lin, M.; Wen, Y.; Li, L.; Pei, H.; Liu, G.; Song, H.; Zuo, X.; Fan, C.; Huang, Q. Anal. Chem. 2014, 86, 2285.
[19]
Wen, Y.; Liu, G.; Pei, H.; Li, L.; Xu, Q.; Liang, W.; Li, Y.; Xu, L.; Ren, S.; Fan, C. Methods 2013, 64, 276.
[20]
Wen, Y.; Pei, H.; Wan, Y.; Su, Y.; Huang, Q.; Song, S.; Fan, C. Anal. Chem. 2011, 83, 7418.
[21]
Pei, H.; Li, F.; Wan, Y.; Wei, M.; Liu, H.; Su, Y.; Chen, N.; Huang, Q.; Fan, C. J. Am. Chem. Soc. 2012, 134, 11876.
[22]
Schreiner, S. M.; Hatch, A. L.; Shudy, D. F.; Howard, D. R.; Howell, C.; Zhao, J.; Koelsch, P.; Zharnikov, M.; Petrovykh, D. Y.; Opdahl, A. Anal. Chem. 2011, 83, 4288.
[23]
Schreiner, S. M.; Shudy, D. F.; Hatch, A. L.; Opdahl, A.; Whitman, L. J.; Petrovykh, D. Y. Anal. Chem. 2010, 82, 2803.
[24]
Opdahl, A.; Petrovykh, D. Y.; Kimura-Suda, H.; Tarlov, M. J.; Whitman, L. J. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 9.
[25]
Jang, N. H. B. Korean Chem. Soc. 2002, 23, 1790.
[26]
Koo, K. M.; Sina, A. A. I.; Carrascosa, L. G.; Shiddiky, M. J. A.; Trau, M. Anal. Methods 2015, 7, 7042.
[27]
Kimura-Suda, H.; Petrovykh, D. Y.; Tarlov, M. J.; Whitman, L. J. J. Am. Chem. Soc. 2003, 125, 9014.
[28]
Opdahl, A.; Petrovykh, D. Y.; Kimura-Suda, H.; Tarlov, M. J.; Whitman, L. J. PNAS 2007, 104, 9.
[29]
Liu, P.; Wang, D.; Zhou, Y.; Wang, H.; Yin, H.; Ai, S. Biosens. Bioelectron. 2016, 80, 74.
[30]
Wang, L.; Zhang, H.; Wang, C.; Xu, Y.; Su, J.; Wang, X.; Liu, X.; Feng, D.; Wang, L.; Zuo, X.; Shi, J.; Ge, Z.; Fan, C.; Mi, X. Biosens. Bioelectron. 2019, 127, 85.
[31]
Zhu, Y.; Jiang, X.; Wang, H.; Wang, S.; Wang, H.; Sun, B.; Su, Y.; He, Y. Anal. Chem. 2015, 87, 6631.
[32]
Li, W.; Li, J.; Qiang, W.; Xu, J.; Xu, D. Analyst 2013, 138, 760.
[33]
Ou, L. J.; Jin, P. Y.; Chu, X.; Jiang, J. H.; Yu, R. Q. Anal. Chem. 2010, 82, 6015.
[34]
Yang, H.; Xiao, M.; Lai, W.; Wan, Y.; Li, L.; Pei, H. Anal. Chem. 2020, 92, 4990.
[35]
Zhang, Y.; Jiao, J.; Wei, Y.; Wang, D.; Yang, C.; Xu, Z. Anal. Chem. 2020, 92, 15244.
[36]
Cai, Y.; Zhu, H.; Zhou, W.; Qiu, Z.; Chen, C.; Qileng, A.; Li, K.; Liu, Y. Anal. Chem. 2021, 93, 7275.
[37]
Yao, G.; Pei, H.; Li, J.; Zhao, Y.; Zhu, D.; Zhang, Y.; Lin, Y.; Huang, Q.; Fan, C. NPG Asia Materials 2015, 7, e159.
[38]
Lu, W.; Wang, L.; Li, J.; Zhao, Y.; Zhou, Z.; Shi, J.; Zuo, X.; Pan, D. Sci. Rep. 2015, 5, 10158.
[39]
Nourisaeid, E.; Mousavi, A.; Arpanaei, A. Physica E 2016, 75, 188.
[40]
Xie, Y.; Huang, Y.; Tang, D.; Cui, H.; Cao, H. Mikrochim. Acta 2018, 185, 534.
[41]
Yin, J.; Wang, J.; Yang, X.; Wu, T.; Wang, H.; Zhou, X. RSC Adv. 2019, 9, 18728.
[42]
Chen, X.; Wang, Y.; Dai, X.; Ding, L.; Chen, J.; Yao, G.; Liu, X.; Luo, S.; Shi, J.; Wang, L.; Nechushtai, R.; Pikarsky, E.; Willner, I.; Fan, C.; Li, J. J. Am. Chem. Soc. 2022, 144, 6311.
[43]
Zhang, Z.; Ma, J.; Zhang, G.; Ding, X.; Zhang, R.; Zhou, T.; Wang, X.; Wang, F. Langmuir 2020, 36, 10989.
[44]
Wu, Z.; Ke, J.; Liu, Y.; Sun, P.; Hong, M. Acta Chim. Sinica 2022, 80, 542. (in Chinese)
[44]
(吴志芬, 柯建熙, 刘永升, 孙蓬明, 洪茂椿, 化学学报, 2022, 80, 542.)
[45]
Zhao, L.-D.; Zuo, P.; Yin, B.-C.; Hong, C.-L.; Ye, B.-C. Acta Chim. Sinica 2020, 78, 1076. (in Chinese)
[45]
(赵丽东, 左鹏, 尹斌成, 洪成林, 叶邦策, 化学学报, 2020, 78, 1076.)
[46]
Huang, Y.; Yang, H. Y.; Ai, Y. Anal. Chem. 2015, 87, 9132.
[47]
Zhang, P.; Chang, L.; Niu, C.; Wang, X.; Li, Z.; Liu, J. ACS Appl. Polym. 2022, 4, 6211.
[48]
Chen, L.; Chao, J.; Qu, X.; Zhang, H.; Zhu, D.; Su, S.; Aldalbahi, A.; Wang, L.; Pei, H. ACS Appl. Mater. Interfaces 2017, 9, 8014.
[49]
Ye, T.; Zhu, D.; Hao, L.; Yuan, M.; Cao, H.; Wu, X.; Yin, F.; Xu, F. Mikrochim. Acta 2022, 189, 151.
[50]
Zhu, D.; Pei, H.; Chao, J.; Su, S.; Aldalbahi, A.; Rahaman, M.; Wang, L.; Wang, L.; Huang, W.; Fan, C.; Zuo, X. Nanoscale 2015, 7, 18671.
[51]
Zhu, D.; Zhao, D.; Huang, J.; Zhu, Y.; Chao, J.; Su, S.; Li, J.; Wang, L.; Shi, J.; Zuo, X.; Weng, L.; Li, Q.; Wang, L. Nanomedicine 2018, 14, 1797.
[52]
Zheng, D.; Seferos, D. S.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Nano Lett. 2009, 9, 3258.
[53]
Liu, M.; Li, Q.; Liang, L.; Li, J.; Wang, K.; Li, J.; Lv, M.; Chen, N.; Song, H.; Lee, J.; Shi, J.; Wang, L.; Lal, R.; Fan, C. Nat. Commun. 2017, 8, 15646.
[54]
Qian, Q.; He, G.; Wang, C.; Li, S.; Zhao, X.; Xu, Y.; Mi, X. Mol. Biol. Rep. 2022, 49, 3705.
[55]
Jiao, K.; Yan, Q.; Guo, L.; Qu, Z.; Cao, S.; Chen, X.; Li, Q.; Zhu, Y.; Li, J.; Wang, L.; Fan, C.; Wang, F. Angew. Chem. Int. Ed. 2021, 60, 14438.
[56]
Wang, S.; Zhang, H.; Li, W.; Birech, Z.; Ma, L.; Li, D.; Li, S.; Wang, L.; Shang, J.; Hu, J. Mikrochim. Acta 2019, 187, 20.
[57]
Chen, Q.; Tian, R.; Liu, G.; Wen, Y.; Bian, X.; Luan, D.; Wang, H.; Lai, K.; Yan, J. Biosens. Bioelectron. 2022, 207, 114187.
[58]
Zhou, Y.; Fang, W.; Lai, K.; Zhu, Y.; Bian, X.; Shen, J.; Li, Q.; Wang, L.; Zhang, W.; Yan, J. Biosens. Bioelectron. 2019, 141, 111419.
[59]
Lim, D. K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J. M. Nat. Nanotechnol. 2011, 6, 452.
[60]
Zhao, B.; Shen, J.; Chen, S.; Wang, D.; Li, F.; Mathur, S.; Song, S.; Fan, C. Chem. Sci. 2014, 5, 4460.
[61]
Zhu, Y.; Jiang, X.; Wang, H.; Wang, S.; Wang, H.; Sun, B.; Su, Y.; He, Y. Anal. Chem. 2015, 87, 6631.
[62]
Wang, H.; Halas, N. J. Adv. Mater. 2008, 20, 820.
[63]
Guo, J.; Chen, Y.; Jiang, Y.; Ju, H. Chem. Eur. J. 2017, 23, 9332.
[64]
Zhou, X.; Sun, Z.; Su, X.; Zheng, K.; Zou, X.; Zhang, W. Anal. Chem. 2023, 95, 1916.
[65]
Khodadoust, A.; Nasirizadeh, N.; Taheri, R. A.; Dehghani, M.; Ghanei, M.; Bagheri, H. Mikrochim. Acta 2022, 189, 213.
[66]
Wang, M.; Cui, H.; Hong, N.; Shu, Q.; Wang, X.; Hu, Y.; Wei, G.; Fan, H.; Zhang, J. Sens. Actuators B Chem. 2022, 358.
[67]
Koo, K. M.; Carrascosa, L. G.; Shiddiky, M. J.; Trau, M. Anal. Chem. 2016, 88, 2000.
[68]
Wang, Q.; Weng, Y.; Liang, W.; Li, Y.; Wu, J.; Zhu, H.; Zhao, K.; Zhang, J.; Jia, N.; Deng, W.; Liu, G. Anal. Chem. 2019, 91, 9277.
[69]
Wang, L.; Wen, Y.; Yang, X.; Xu, L.; Liang, W.; Zhu, Y.; Wang, L.; Li, Y.; Li, Y.; Ding, M.; Ren, S.; Yang, Z.; Lv, M.; Zhang, J.; Ma, K.; Liu, G. Anal. Chem. 2019, 91, 16002.
文章导航

/