研究论文

高效率Tb3+单掺绿色荧光粉的光致/应力发光研究

  • 陈慧敏 ,
  • 王龙 ,
  • 张盼 ,
  • 白西林 ,
  • 周国君
展开
  • a 山西师范大学 物理与信息工程学院 太原 030031
    b 山西师范大学 化学与材料科学学院 太原 030031
    c 南开大学 物理科学学院 天津 300071

收稿日期: 2023-05-06

  网络出版日期: 2023-06-01

基金资助

国家自然科学基金(52202177); 山西省基础研究计划(202103021223262); 山西省基础研究计划(20210302124054); 及山西师范大学自然科学基金(JCYJ2022015)

Investigation on Photoluminescence and Mechanoluminescence of Single Tb3+-doped Intense Green Phosphor

  • Huimin Chen ,
  • Long Wang ,
  • Pan Zhang ,
  • Xilin Bai ,
  • Guojun Zhou
Expand
  • a College of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031
    b College of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031
    c School of Physics, Nankai University, Tianjin 300071

Received date: 2023-05-06

  Online published: 2023-06-01

Supported by

National Natural Science Foundation of China(52202177); Fundamental Research Program of Shanxi Province(202103021223262); Fundamental Research Program of Shanxi Province(20210302124054); Natural Science Foundation of Shanxi Normal University(JCYJ2022015)

摘要

稀土离子Tb3+被视为当前绿色荧光材料中最具潜力的激活剂之一. 采用高温固相法制备了新型绿色荧光粉β-KMg(PO3)3:Tb3+, 其在紫外光区域具有强的f-f跃迁激发峰, 呈现出较高的荧光量子产率(90.74%), 且色度坐标与商用绿色荧光粉接近, 其发射峰源于Tb3+5D4-7FJ (J=6, 5, 4, 3)跃迁发射; Tb3+占据Mg2+格位, 由于电荷差而产生的缺陷被热释光验证, 多种深度陷阱能级的存在使得该荧光粉具备优异的热稳定性. 更重要的是, β-KMg(PO3)3:Tb3+呈现出优异的应力发光特性, 在应力刺激下陷阱能级中的电子及空穴分别被释放回Tb3+的激发态及基态, 实现Tb3+5D3-7FJ (J=6, 5, 4)及5D4-7FJ (J=6, 5, 4, 3)跃迁. 该绿色荧光粉粉末及复合薄膜材料均呈现出优异的光致及应力发光性能, 在固态照明、显示与应力传感等领域具有应用前景.

本文引用格式

陈慧敏 , 王龙 , 张盼 , 白西林 , 周国君 . 高效率Tb3+单掺绿色荧光粉的光致/应力发光研究[J]. 化学学报, 2023 , 81(7) : 771 -776 . DOI: 10.6023/A23050209

Abstract

Mechanoluminescent (ML) materials can directly convert mechanical energy into optical energy and play a significant role in stress monitoring, anti-counterfeiting, etc. However, most of green ML materials need to be synthesized under high temperature and reducing atmosphere, which makes the development of green ML materials urgent. Rare earth ion Tb3+ is regarded as one of the most potential activators in green phosphor materials. In this work, novel single Tb3+-doped β-KMg(PO3)3 green phosphors were synthesized via high temperature solid state method. The structure was characterized via X-ray diffraction (XRD) and scanning electron microscope (SEM). The photoluminescent (PL) properties were studied by excitation and emission spectra. It shows strong f-f transition excitation peaks in the UV region with a high quantum yield of 90.74%. The color coordinate of β-KMg(PO3)3:Tb3+ is close to that of commercial green phosphor, resulting from the 5D4-7FJ (J=6, 5, 4, 3) transition emission of Tb3+. Tb3+ occupies Mg2+ sites, and the defects caused by charge difference are verified by thermoluminescence (TL). The existence of multiple trap levels makes the phosphors possess excellent thermal stability. More importantly, β-KMg(PO3)3:Tb3+ exhibits outstanding ML properties. The trap levels formed by the defects play a significant role in the process of ML. Under the stimulation of mechanical stress, the electrons and holes in the trap levels are released to the excited states and ground states of Tb3+ respectively, and the 5D3-7FJ (J=6, 5, 4) and 5D4-7FJ (J=6, 5, 4, 3) transitions of Tb3+ are realized. Both the powders and the polydimethylsiloxane (PDMS) composite materials show excellent PL and ML properties. The high sensitivity to stress is attributed to the flexible structural framework of β-KMg(PO3)3, which is easy to generate high strain energy. The materials have promising application prospect in solid state lighting, display and stress sensing.

参考文献

[1]
Liu W.; Li X. L.; Liu J.; Han X.; Yan J. H.; Kang Z. H.; Lian H. Z. Acta Chim. Sinica 2011, 69, 1565. (in Chinese)
[1]
(刘伟, 李西林, 刘娟, 韩厦, 闫景辉, 康振辉, 连洪洲, 化学学报, 2011, 69, 1565.)
[2]
(a) Tu D.; Peng D. F.; Xu C. N. Yoshida A. J. Ceram. Soc. Jpn. 2016, 124, 702.
[2]
(b) Zhang J. C.; Gao N.; Li L.; Wang S. S.; Shi X. F.; Sun M. Z.; Yan X.; He H. W.; Ning X.; Huang B. L. Qiu J. R. Adv. Funct. Mater. 2021, 31, 2100221.
[2]
(c) Chen C. J.; Zhuang Y. X.; Tu D.; Wang X. D.; Pan C. F.; Xie R. J. Nano Energy 2020, 68, 104329.
[2]
(d) Xu C. N.; Watanabe T.; Akiyama M.; Zheng X. G. Appl. Phys. Lett. 1999, 74, 2414.
[2]
(e) Chang K.; Li Q. Q.; Li Z. Chin. J. Org. Chem. 2020, 40, 3656. (in Chinese)
[2]
(常凯, 李倩倩, 李振, 有机化学, 2020, 40, 3656.)
[2]
(f) Liu M. L.; Wu Q.; Shi H. F.; An Z. F.; Huang W. Acta Chim. Sinica 2018, 76, 246. (in Chinese)
[2]
(刘明丽, 吴琪, 史慧芳, 安众福, 黄维, 化学学报, 2018, 76, 246.)
[3]
(a) Chen B.; Peng D. F.; Lu P.; Sheng Z. P.; Yan K. Y.; Fu Y. Mater. Des. 2023, 226, 111588.
[3]
(b) Zhuang Y. X.; Xie R. J. Adv. Mater. 2021, 33, 2005925.
[3]
(c) Li X.; Wang C. F.; Zheng Y. T.; Huang Z. F.; Luo J. C.; Zhu M. J.; Liang T. L.; Ren B. Y.; Zhang X. H.; Wang D.; Ren Z. B.; Qu S.; Zheng W.; Wei X. Y.; Peng D. F. Mater. Des. 2023, 225, 111589.
[3]
(d) Ma Z. D.; Han Y.; Bai Y. Q.; Liu B.; Wang Z. F. Chem. Eng. J. 2023, 456, 141122.
[3]
(e) Chen B.; Peng D. F.; Lu P.; Sheng Z. P.; Yan K. Y.; Fu Y. Mater. Des. 2023, 226, 111588.
[3]
(f) Qian X.; Su M.; Li F. Y.; Song Y. L. Acta Chim. Sinica 2016, 74, 565. (in Chinese)
[3]
(钱鑫, 苏萌, 李风煜, 宋延林, 化学学报, 2016, 74, 565.)
[3]
(g) Zhou X. Q.; Ning L. X.; Qiao J. W.; Zhao Y. F.; Xiong P. X.; Xia Z. G. Nat. Commun. 2022, 13, 7589.
[4]
(a) Tu D.; Xu C. N.; Fujio Y.; Yoshida A. Light Sci. Appl. 2015, 4, e356.
[4]
(b) Zhou H.; Du Y. D.; Wu C.; Jiang Y. J.; Wang F.; Zhang J. C.; Wang Z. F. J. Lumin. 2018, 203, 683.
[5]
(a) Tu D.; Xu C. N.; Saito R.; Liu L. S.; Yoshida A. J. Ceram. Soc. Jpn. 2017, 125, 648.
[5]
(b) Zhang H. W.; Xu C. N.; Terasaki N.; Yamada H. Phys. E 2010, 42, 2872.
[6]
(a) Chen H. M.; Wu L. W.; Bo F.; Jian J. K.; Wu L.; Zhang H. W.; Zheng L. R.; Kong Y. F.; Zhang Y.; Xu J. J. J. Mater. Chem. C 2019, 7, 7096.
[6]
(b) Wu L.; Sun S. J.; Bai Y. X.; Xia Z. G.; Wu L. W.; Chen H. M.; Zheng L. R.; Yi H.; Sun T. Q.; Kong Y. F.; Zhang Y.; Xu J. J. Adv. Opt. Mater. 2021, 9, 2100870.
[7]
Chen H. M.; Lei Y.; Li J. J.; Chen K. X.; Wu L.; Zheng L. R.; Sun T. Q.; Kong Y. F.; Zhang Y.; Xu J. J. Inorg. Chem. 2022, 61, 5495.
[8]
(a) Chen M. Y.; Xia Z. G.; Molokeev M. S.; Wang T.; Liu Q. L. Chem. Mater. 2017, 29, 1430.
[8]
(b) Chen M. Y.; Xia Z. G.; Molokeev M. S.; Lin C. C.; Su C. C.; Chuang Y. C.; Liu Q. L. Chem. Mater. 2017, 29, 7563.
[8]
(c) Wang X. C.; Zhao Z. Y.; Wu Q. S.; Wang C.; Wang Q.; Li Y. Y.; Wang Y. H. J. Mater. Chem. C 2016, 4, 8795.
[9]
Dou X. H.; Zhao W. R.; Song E. H.; Deng L. L.; Fang X. B.; Min H. C. J. Rare Earths 2012, 30, 739.
[10]
(a) Qin S. Y.; Bian J.; Han Y.; Ma Z.; Liu B.; Zhang J. C.; Xu X. H.; Wang Z. F. Mater. Res. Bull. 2022, 145, 111535.
[10]
(b) Li L.; Wei X. T.; Chen Y. H.; Guo C. X.; Yin M. J. Rare Earths 2012, 30, 197.
[11]
(a) Sun J. Y.; Lai J. L.; Zhu J. C.; Xia Z. G.; Du H. Y. Ceram. Int. 2012, 38, 5341.
[11]
(b) Tosaka Y. Adachi S. J. Lumin. 2014, 156, 157.
[11]
(c) Xia Z. G.; Liu R. S. J. Phys. Chem. C 2012, 116, 15604.
[11]
(d) Sun S. J.; Wu L.; Yi H.; Wu L. W.; Ji J. Y.; Zhang C. L.; Zhang Y.; Kong Y. F.; Xu J. J. Opt. Mater. Express 2016, 6, 1172.
[11]
(e) Jin Y. H.; Hu Y. H.; Chen L.; Wang X. J.; Mu Z. F.; Ju G. F.; Yang Z. F. Phys. B 2014, 436, 105.
[11]
(f) Li K.; Shang M. M.; Geng D. L.; Lian H. Z.; Zhang Y.; Fan J.; Lin J. Inorg. Chem. 2014, 53, 6743.
[12]
(a) Wang X.; Han Y. D.; Hao S. Q.; Yu J. H.; Xu R. R. Acta Chim. Sinica 2012, 70, 1496. (in Chinese)
[12]
(王曦, 韩义德, 郝素琴, 于吉红, 徐如人, 化学学报, 2012, 70, 1496.)
[12]
(b) Dou X. H.; Zhao W. R.; Song E. H.; Min H. C. Acta Phys.-Chim. Sin. 2012, 28, 699. (in Chinese)
[12]
(豆喜华, 赵韦人, 宋恩海, 闵华初, 物理化学学报, 2012, 28, 699.)
[12]
(c) Cao J. K.; Chen W. P.; Chen L. P.; Sun X. Y.; Guo H. Ceram. Int. 2016, 42, 17834.
[13]
Liang P.; Zhang H. S.; Huang H. S.; Li S. Y.; Zhang X. T.; Wang Y.; Li L. Q.; Liu Z. H. Acta Chim. Sinica 2023, 81, 371. (in Chinese)
[13]
(梁攀, 张宏淑, 黄宏升, 李飒英, 张笑恬, 王英, 李连庆, 刘志宏, 化学学报, 2023, 81, 371.)
[14]
(a) Ratnam B. V.; Jayasimhadri M.; Bhaskar Kumar G.; Jang K.; Kim S. S.; Lee Y. I.; Lim J. M.; Shin D. S.; Song T. K. J. Alloys Compd. 2013, 564, 100.
[14]
(b) Caldi?o U.; Speghini A.; Bettinelli M. J. Phys.: Condens. Matter 2006, 18, 3499.
[15]
(a) Zhang J. R.; Huang D. C.; Huang C. C.; Liang S. S.; Zhu H. M. Acta Chim. Sinica 2022, 80, 453. (in Chinese)
[15]
(张景荣, 黄得财, 黄聪聪, 梁思思, 朱浩淼, 化学学报, 2022, 80, 453.)
[15]
(b) Zhou G. J.; Liu Z. Y.; Huang J. L.; Molokeev M. S.; Xiao Z. W.; Ma C. G.; Xia Z. G. J. Phys. Chem. Lett. 2020, 11, 5956.
[16]
Xia Z. G.; Miao S. H.; Molokeev M. S.; Chen M. Y.; Liu Q. L. J. Mater. Chem. C 2016, 4, 1336.
[17]
Huang W. J.; Wen Z. X.; Li L. J.; Ashraf G. A.; Chen L. P.; Lei L.; Guo H.; Li X. M. Ceram. Int. 2022, 48, 17178.
[18]
Liao J. S.; Qiu B.; Wen H. R.; You W. X. Opt. Mater. 2009, 31, 1513.
[19]
Zhou X. Q.; Han K.; Wang Y. X.; Jin J. C.; Jiang S. D.; Zhang Q. Y.; Xia Z. G. Adv. Mater. 2023, 35, 2212022.
[20]
(a) Wang J.; Zhang H. R.; Lei B. F.; Dong H. W.; Zhang H. M.; Liu Y. L.; Zheng M. T.; Xiao Y.; Xie R. J. J. Am. Ceram. Soc. 2015, 98, 1823.
[20]
(b) Zhou X. Q.; Qiao J. W.; Zhao Y. F.; Han K.; Xia Z. G. Sci. China Mater. 2022, 65, 1103.
[21]
Chen H. M.; Wu L.; Sun T. Q.; Dong R.; Zheng Z. Z.; Kong Y. F.; Zhang Y.; Xu J. J. Appl. Phys. Lett. 2020, 116, 051904.
文章导航

/