综述

生物大分子介质中的反常扩散动力学理论

  • 魏文杰 ,
  • 陈文龙 ,
  • 戴晓彬 ,
  • 燕立唐
展开
  • 清华大学化学工程系 北京 100084

魏文杰, 清华大学化学工程系在读博士研究生. 2022年本科毕业于清华大学. 目前主要从事大分子体系中活性粒子的扩散动力学计算机模拟研究.

陈文龙, 清华大学化学工程系在读博士研究生. 2022年本科毕业于清华大学. 主要从事大分子网络中扩散动力学的计算机模拟研究.

戴晓彬, 清华大学化学工程系在读博士研究生. 2014年本科毕业于清华大学. 主要从事大分子的计算机理论计算与模拟研究, 包括聚合物纳米复合体系, 大分子网络体系等.

燕立唐, 清华大学化工系长聘教授. 主要研究方向为, 结合现代软凝聚态物理与传统高分子物理, 发展新的计算模型和解析理论, 应用于大分子组装、凝胶体系以及生命大分子体系的基础理论研究. 曾获德国洪堡学者基金, 国家基金委优秀青年基金和国家杰出青年科学基金项目资助.

庆祝《化学学报》创刊90周年.
† 共同第一作者

收稿日期: 2023-04-27

  网络出版日期: 2023-06-02

基金资助

项目受国家重点基础研究发展规划(2022YFA1200061); 国家自然科学基金(22025302); 国家自然科学基金(21873053); 化学工程联合国家重点实验室(SKL-ChE-23T01)

Theory of Anomalous Diffusion Dynamics in Biomacromolecular Media

  • Wenjie Wei ,
  • Wenlong Chen ,
  • Xiaobin Dai ,
  • Li-Tang Yan
Expand
  • Department of Chemical Engineering, Tsinghua University, Beijing 100084
Dedicated to the 90th anniversary of Acta Chimica Sinica.
† These authors contributed equally to this work.

Received date: 2023-04-27

  Online published: 2023-06-02

Supported by

State Key Development Program of Basic Research of China(2022YFA1200061); National Natural Science Foundation of China(22025302); National Natural Science Foundation of China(21873053); State Key Laboratory of Chemical Engineering(SKL-ChE-23T01)

摘要

生命体系中的扩散行为涉及营养摄取和药物递送等重要的生命过程. 深入了解粒子在生物大分子介质中的扩散行为将有助于理解相关生命现象以及发展新型医用材料. 生物大分子介质中的扩散行为往往是反常的, 不能简单地基于传统扩散常数方程进行描述. 这通常归因于生物介质中的拥挤环境与复杂相互作用使扩散产生了持续相关性, 进而导致中心极限定理不再适用. 从反常扩散的扩散系数、均方位移以及位移概率分布函数三个方面分析了反常扩散的机理与物理特征, 综述了近年来针对大分子介质中反常扩散的研究进展. 随后概述了反常扩散的物理模型与现有理论框架. 最后对生物大分子介质中反常扩散动力学理论的未来发展方向进行了展望.

本文引用格式

魏文杰 , 陈文龙 , 戴晓彬 , 燕立唐 . 生物大分子介质中的反常扩散动力学理论[J]. 化学学报, 2023 , 81(8) : 967 -978 . DOI: 10.6023/A23040172

Abstract

Diffusion behavior in life system involves important life processes such as nutrient uptake and drug delivery. A deeper understanding about diffusive behavior of particles in complex biomacromolecular media will facilitate the understanding of relevant life phenomena as well as the development of novel medical materials. The diffusion behavior in biomacromolecular media is often anomalous and cannot be described simply based on the conventional diffusion constant equation. This is usually attributed to the continuous correlation of diffusion caused by crowded environment and complex interactions in biological medium, which leads to the central limit theorem no longer applicable. The mechanism and physical characteristics of anomalous diffusion were analyzed from three aspects: diffusion coefficient, mean square displacement, and displacement probability distribution function. The recent progress of anomalous diffusion in biomacromolecular media was summarized. The physical model and existing theoretical framework of anomalous diffusion are then outlined. Finally, the future direction of anomalous diffusion dynamics in biomacromolecular media is discussed.

参考文献

[1]
Brown R. Philos. Mag. 1828, 4, 161.
[2]
Einstein A. Ann. Phys. 1905, 17, 549.
[3]
Smoluchowski M. von. Ann. Phys. 1906, 21, 756.
[4]
Sacanna S.; Pine D. J. J. Colloid Interface Sci. 2011, 16, 96.
[5]
Lee K. J.; Yoon J.; Lahann J. J. Colloid Interface Sci. 2011, 16, 195.
[6]
Li X.; Vlahovska P. M.; Karniadakis G. E. Soft Matter. 2013, 9, 28.
[7]
Frey E.; Kroy K. Ann. Phys. 2005, 517, 20.
[8]
Smith P. R.; Morrison I. E. G.; Wilson K. M.; Fernandez N.; Cherry R. J. Biophys. J. 1999, 76, 3331.
[9]
Caspi A.; Granek R.; Elbaum M. Phys. Rev. Lett. 2000, 87, 5655.
[10]
Seisenberger G.; Ried M. U.; Endress T.; Buning H.; Hallek M.; Brauchle C. Science 2001, 294, 1929.
[11]
Weiss M.; Elsner E.; Kartberg F.; Nilson T. Biophys. J. 2004, 87, 3518.
[12]
Golding I.; Cox E. Phys. Rev. Lett. 2006, 96, 098102.
[13]
Saxton M. J. Biophys. J. 2007, 92, 1178.
[14]
Weber S. C.; Spakowitz A. J.; Theriot J. A. Phys. Rev. Lett. 2010, 104, 238102.
[15]
Malchus N.; Weiss M. J. Fluoresc. 2010, 20, 19.
[16]
Hofling F.; Bamberg K. U.; Franosch T. Soft Matter. 2011, 7, 1358.
[17]
Bancaud A.; Huet S.; Daigle N.; Mozziconacci J.; Beaudouin J.; Ellenberg J. EMBO J. 2009, 28, 3785.
[18]
Weber S. C.; Spakowitz A. J.; Theriot J. A. Phys. Rev. Lett. 2010, 104, 238102.
[19]
Wong I. Y.; Gardel M. L.; Reichman D. R.; Weeks E. R.; Valentine M. T.; Bausch A. R.; Weitz D. A. Phys. Rev. Lett. 2004, 92, 178101.
[20]
Gielen E.; Vercammen J.; Sykora J.; Humpolickova J.; Vandeven M.; Benda A.; Hellings N.; Hof M.; Engelborghs Y.; Steels P.; Ameloot M. C. R. Biol. 2005, 328, 1057.
[21]
Dai X. B.; Zhang X. Y.; Gao L. J.; Yan L. T. Acta Polym. Sin. 2021, 52, 1076. (in Chinese)
[21]
( 戴晓彬, 张轩钰, 高丽娟, 燕立唐, 高分子学报, 2021, 52, 1076.)
[22]
Weiss M.; Elsner M.; Kartberg F.; Nilsson T. Biophys. J. 2004, 87, 3518.
[23]
Ando T.; Skolnick J. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 18457.
[24]
Baumg artner, A.; Muthukumar, M. J. Chem. Phys. 1987, 87, 3082.
[25]
Slater G. W.; Wu S. Y. Phys. Rev. Lett. 1995, 75, 164.
[26]
Nixon G. I.; Slater G. W. Phys. Rev. E 1999, 60, 3170.
[27]
Tabatabaei F.; Lenz O.; Holm C. Colloid Polym. Sci. 2011, 289, 523.
[28]
Shi H. B.; Yu Y. X.; Gao G. H. Acta Chim. Sinica 2005, 63, 358. (in Chinese)
[28]
( 史红兵, 于养信, 高光华, 化学学报, 2005, 63, 358.)
[29]
Huang Y. R.; Zheng X.; Hu G. Q. Physics of Gases, 2018, 3, 1. (in Chinese)
[29]
( 黄艺荣, 郑旭, 胡国庆, 气体物理, 2018, 3, 1.)
[30]
Skaug M. J.; Faller R.; Longo M. L. J. Chem. Phys. 2011, 134, 215101.
[31]
Nicolau D. V. Jr.; Hancock J. F.; Burrage K. Biophys. J. 2007, 92, 1975.
[32]
Niehaus A. M. S.; Vlachos D. G.; Edwards J. S.; Plechac P.; Tribe R. Biophys. J. 2008, 94, 1551.
[33]
Fick A. Ann. Phys. 1855, 170, 59.
[34]
Perrin J. Acad. Sci. Paris C. R. 1908, 146, 967.
[35]
Langevin P. Acad. Sci. Paris C. R. 1908, 146, 530.
[36]
Anish T.; Michael E. M. Nano Lett. 2007, 7,1276.
[37]
Yamamoto U.; Schweizer K. S. Macromolecules 2014, 48, 152.
[38]
Popova H.; Egorov S. A.; Milchev A. J. Chem. Phys. 2020, 152, 234902.
[39]
Kalathi J. T.; Yamamoto U.; Schweizer K. S.; Grest G. S.; Kumar S. K. Phys. Rev. Lett. 2014, 112, 108301.
[40]
Cai L. H.; Panyukov S.; Rubinstein M. Macromolecules 2015, 48, 847.
[41]
Dell Z. E.; Schweizer K. S. Macromolecules 2013, 47, 405.
[42]
Guo H.; Bourret G.; Lennox R. B.; Sutton M.; Harden J. L.; Leheny R. L. Phys. Rev. Lett. 2012, 109, 055901.
[43]
Xu Z.; Dai X.; Bu X.; Yang Y.; Zhang X.; Man X.; Zhang X.; Doi M.; Yan L. T. ACS Nano. 2021, 15, 4608.
[44]
Dai X.; Zhang X.; Gao L.; Xu Z.; Yan L. T. Nat. Commun. 2022, 13, 4094.
[45]
Viswanathan G. M.; Buldyrev S. V.; Havlin S.; da, luz, M. G. E.; Raposo, E. P.; Stanley H. E. Nature 1999, 401, 911.
[46]
Wang B.; Kuo J.; Granick S. Phys. Rev. Lett. 2013, 111, 208102.
[47]
Barthelemy P.; Bertolotti J.; Wiersma D. S. Nature 2008, 453, 495.
[48]
Chen K.; Wang B.; Granick S. Nat. Mater. 2015, 14, 589.
[49]
Chen P.; Yue H.; Zhai X.; Huang Z.; Ma G. H.; Wei W.; Yan L. T. Sci. Adv. 2019, 5, 3192.
[50]
Huang Z.; Chen P.; Zhu G.; Yang Y.; Xu Z.; Yan L. T. ACS Nano. 2018, 12, 6725.
[51]
Chen P.; Huang Z.; Liang J.; Cui T.; Zhang X.; Miao B.; Yan L. T. ACS Nano. 2016, 10, 11541.
[52]
Chen K.; Wang B.; Guan J.; Granick S. ACS Nano. 2013, 7, 8634.
[53]
Wang B.; Anthony S. M.; Bae S. C.; Granick S. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 15160.
[54]
Leptos K. C.; Guasto J. S.; Gollub J. P.; Pesci A. I.; Goldstein R. E. Phys. Rev. Lett. 2009, 103, 198103.
[55]
Menzel A. M.; Goldenfeld N. Phys. Rev. E 2011, 84, 011122.
[56]
Kurtuldu H.; Guasto J. S.; Johnson K. A.; Gollub J. P. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 10391.
[57]
Eaves J. D.; Reichman D. R. Proc. Natl. Acad. Sci. U. S. A. 2011, 106, 15171.
[58]
Stariolo D. A.; Fabricius G. J. Chem. Phys. 2006, 125, 064505.
[59]
Saltzman E. J.; Schweizer K. S. Phys. Rev. E 2008, 77, 051504.
[60]
Weeks E. R.; Crocker J. C.; Levitt A. C.; Schofield A.; Weitz D. A. Science 2000, 287, 627.
[61]
Kegel W. K.; van Blaaderen A. Science 2000, 287, 290.
[62]
Chaudhuri P.; Berthier L.; Kob W. Phys. Rev. Lett. 2007, 99, 060604.
[63]
Gao Y.; Kilfoil M. L. Phys. Rev. Lett. 2007, 99, 078301.
[64]
Wang B.; Kuo J.; Bae S. C.; Granick S. Nat. Mater. 2012, 11, 481.
[65]
Zhang X.; Dai X.; Habib M. A.; Xu Z. Y.; Gao L. J.; Chen W. L.; Wei W. J.; Tang Z. Q.; Qi X. Y.; Gong X. J.; Jiang L. X.; Yan, L. T. arXiv preprint arXiv:2212. 13341, 2022.
[66]
Beck C.; Cohen E. G. Physica A 2003, 322, 267.
[67]
Beck C. Prog. Theo. Phys. Supp. 2006, 162, 29.
[68]
Van der Straeten E.; Beck C. Phys. Rev. E. 2009, 80, 036108.
[69]
Hapca S.; Crawford J. W.; Young I. M. J. R. Soc. Interface 2009, 6, 111.
[70]
Chubynsky M. V.; Slater G. W. Phys. Rev. Lett. 2014, 113, 098302.
[71]
Jain R.; Sebastian K. L. J. Phys. Chem. B 2016, 120, 3988.
[72]
Chechkin A. V.; Seno F.; Metzler R.; Sokolov I. M. Phys. Rev. X. 2017, 7, 021002.
[73]
Mura A.; Taqqu M. S.; Mainardi F. Physica A 2008, 387, 5033.
[74]
Mura A.; Mainardi F. Integral Transform Spec. Funct. 2009, 20, 185.
[75]
Pagnini G.; Kober E. Fract. Calc. Appl. Anal. 2012, 5, 117.
[76]
Benoit B. M.; John W. V. N. SIAM Rev. Soc. Ind. Appl. Math. 1968, 10, 422.
[77]
Montroll E. W.; Weiss G. H. J. Math. Phys. 1965, 6, 167.
[78]
Risken H. In Part of the Springer Series in Synergetics Book Series, Vol. 18, Ed.: Haken, H., Springer, Berlin, 1996, Chapter 3.
[79]
Ralf M.; Eli B.; Joseph K. Phys. Rev. Lett. 1999, 82, 3563.
文章导航

/