卟啉基共价有机框架的光催化研究进展★
收稿日期: 2023-04-28
网络出版日期: 2023-06-07
基金资助
国家自然科学基金(22225503); 国家自然科学基金(U21A20285)
Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis★
Received date: 2023-04-28
Online published: 2023-06-07
Supported by
National Natural Science Foundation of China(22225503); National Natural Science Foundation of China(U21A20285)
何明慧 , 叶子秋 , 林桂庆 , 尹晟 , 黄心翊 , 周旭 , 尹颖 , 桂波 , 汪成 . 卟啉基共价有机框架的光催化研究进展★[J]. 化学学报, 2023 , 81(7) : 784 -792 . DOI: 10.6023/A23040178
Covalent organic frameworks (COFs) are a class of crystalline organic porous materials formed by molecular building blocks via covalent bonds. According to the dimensions of the framework extended in space, COFs can be divided into two-dimensional and three-dimensional COFs. Owing to their high specific surface area, good stability and strong designability, COFs have broad prospects in the fields of gas adsorption and separation, catalysis, sensing, optoelectronics, and energy storage. In the field of photocatalysis, COFs have the following advantages. First, COFs are highly designable, which can achieve efficient photocatalysis by introducing different functional units to adjust the band gap energy and light absorption range. Secondly, the ordered structure of COFs improves the electron-hole separation efficiency. In addition, the high specific surface area and abundant active sites of COFs can promote the photocatalytic reaction and improve the reaction rate. Finally, COFs are connected by covalent bonds, which make them highly stable and facilitate the maintenance of catalytic activity in the photocatalytic process. Porphyrins are a class of 18 π-electron conjugated macrocyclic compounds formed by the interconnection of four pyrroles, which can be involved in photosynthesis as the core part of chlorophyll and other biomolecules. As a kind of functional units with large π-conjugated structure and good photophysical properties, porphyrins usually have strong absorption in the 400~450 nm (Soret band) and 500~700 nm (Q band) regions, and their photocatalytic properties can be regulated by coordination with metal ions and modification of functional groups, which has unique advantages in the field of photocatalysis. By introducing porphyrins into COFs, combined with their unique advantages, porphyrin-based COFs have been found great potential in the field of photocatalysis due to the exceptional optical absorption in a broad spectral range, multiple active sites and effective electron-hole separation ability. As a new type of photocatalyst, porphyrin-based COFs have attracted much interest and have been rapidly developed in the field of photocatalysis. In this review, we focus on the discussion of porphyrin-based COFs in the photocatalytic CO2 reduction, photocatalytic water splitting, photocatalytic organic transformation, and photocatalytic reduction of hexavalent uranium. Finally, the prospects and challenges of porphyrin-based COFs in photocatalysis are discussed.
Key words: covalent organic framework; porphyrin; photocatalysis
[1] | Li X. B.; Xin Z. K.; Xia S. G.; Gao X. Y.; Tung C. H.; Wu L. Z. Chem. Soc. Rev. 2020, 49, 9028. |
[2] | (a) Li X. B.; Tung C. H.; Wu L. Z. Nat. Rev. Chem 2018, 2, 160. |
[2] | (b) Frischmann P. D.; Mahata K.; Wurthner F. Chem. Soc. Rev. 2013, 42, 1847. |
[3] | (a) Du P.; Eisenberg R. Energy Environ. Sci. 2012, 5, 6012. |
[3] | (b) Guo Q.; Ma Z.; Zhou C.; Ren Z.; Yang X. M. Chem. Rev. 2019, 119, 11020. |
[3] | (c) Li S. H.; Qi M. Y.; Tang Z. R.; Xu Y. J. Chem. Soc. Rev. 2021, 50, 7539. |
[3] | (d) Sulas-Kern D. B.; Miller E. M.; Blackburn J. L. Energy Environ. Sci. 2020, 13, 2684. |
[3] | (e) Cheng Z.; Qi W.; Pang C. H.; Thomas T.; Wu T.; Liu S.; Yang M. Adv. Funct. Mater. 2021, 31, 2100553. |
[4] | (a) Yuan Y. J.; Yu Z. T.; Chen D. Q.; Zou Z. G. Chem. Soc. Rev. 2017, 46, 603. |
[4] | (b) Jing X.; He C.; Zhao L.; Duan C. Y. Acc. Chem. Res. 2019, 52, 100. |
[4] | (c) Lavarda G.; Labella J.; Martínez-Díaz M. V.; Rodríguez-Morgade M. S.; Osuka A.; Torres T. Chem. Soc. Rev. 2022, 51, 9482. |
[4] | (d) Bai X.; Yan S.; Wang J.; Wang L.; Jiang W.; Wu S.; Sun C.; Zhu Y. F. J. Mater. Chem. A 2014, 2, 17521. |
[4] | (e) Lee J.-S. M.; Cooper A. I. Chem. Rev. 2020, 120, 2171. |
[4] | (f) Schwab M. G.; Hamburger M.; Feng X.; Shu J.; Spiess H. W.; Wang X.; Antonietti M.; Müllen K. Chem. Commun. 2010, 46, 8932. |
[4] | (g) Wang H.; Wang H.; Wang Z.; Tang L.; Zeng G.; Xu P.; Chen M.; Xiong T.; Zhou C.; Li X.; Huang D.; Zhu Y.; Wang Z.; Tang J. W. Chem. Soc. Rev. 2020, 49, 4135. |
[5] | (a) Ding S. Y.; Wang W. Chem. Soc. Rev. 2013, 42, 548. |
[5] | (b) Geng K.; He T.; Liu R.; Dalapati S.; Tan K. T.; Li Z.; Tao S.; Gong Y.; Jiang Q.; Jiang D. L. Chem. Rev. 2020, 120, 8814. |
[5] | (c) Liang R. R.;Jiang, S. Y.; A, R. H.; Zhao, X. Chem. Soc. Rev. 2020, 49, 3920. |
[5] | (d) Lyle S. J.; Waller P. J.; Yaghi O. M. Trends Chem. 2019, 1, 172. |
[5] | (e) Gui B.; Ding H.; Cheng Y.; Mal A.; Wang C. Trends Chem. 2022, 4, 437. |
[6] | Guan X.; Chen F.; Fang Q.; Qiu S. Chem. Soc. Rev. 2020, 49, 1357. |
[7] | (a) Jiang L.; Tian Y.; Sun T.; Zhu Y.; Ren H.; Zou X.; Ma Y.; Meihaus K. R.; Long J. R.; Zhu G. S. J. Am. Chem. Soc. 2018, 140, 15724. |
[7] | (b) Khan N. A.; Zhang R.; Wu H.; Shen J.; Yuan J.; Fan C.; Cao L.; Olson M. A.; Jiang Z. J. Am. Chem. Soc. 2020, 142, 13450. |
[7] | (c) Zhao S.; Jiang C.; Fan J.; Hong S.; Mei P.; Yao R.; Liu Y.; Zhang S.; Li H.; Zhang H.; Sun C.; Guo Z.; Shao P.; Zhu Y.; Zhang J.; Guo L.; Ma Y.; Zhang J.; Feng X.; Wang F.; Wu H.; Wang B. Nat. Mater. 2021, 20, 1551. |
[7] | (d) Zhang Z.; Kang C.; Peh S. B.; Shi D.; Yang F.; Liu Q.; Zhao D. J. Am. Chem. Soc. 2022, 144, 14992. |
[8] | (a) Vyas V. S.; Haase F.; Stegbauer L.; Savasci G.; Podjaski F.; Ochsenfeld C.; Lotsch B. V. Nat. Commun. 2015, 6, 8508. |
[8] | (b) Yang S.; Hu W.; Zhang X.; He P.; Pattengale B.; Liu C.; Cendejas M.; Hermans I.; Zhang X.; Zhang J.; Huang J. J. Am. Chem. Soc. 2018, 140, 14614. |
[8] | (c) Zhi Q.; Liu W.; Jiang R.; Zhan X.; Jin Y.; Chen X.; Yang X.; Wang K.; Cao W.; Qi D.; Jiang J. Z. J. Am. Chem. Soc. 2022, 144, 21328. |
[8] | (d) Zhao W.; Yan P.; Yang H.; Bahri M.; James A. M.; Chen H.; Liu L.; Li B.; Pang Z.; Clowes R.; Browning N. D.; Ward J. W.; Wu Y.; Cooper A. I. Nat. Synth. 2022, 1, 87. |
[9] | (a) Jhulki S.; Evans A. M.; Hao X.-L.; Cooper M. W.; Feriante C. H.; Leisen J.; Li H.; Lam D.; Hersam M. C.; Barlow S.; Brédas J.-L.; Dichtel W. R.; Marder S. R. J. Am. Chem. Soc. 2020, 142, 783. |
[9] | (b) Meng Z.; Stolz R. M.; Mirica K. A. J. Am. Chem. Soc. 2019, 141, 11929. |
[9] | (c) Das G.; Biswal B. P.; Kandambeth S.; Venkatesh V.; Kaur G.; Addicoat M.; Heine T.; Verma S.; Banerjee R. Chem. Sci. 2015, 6, 3931. |
[10] | (a) Jin E.; Asada M.; Xu Q.; Dalapati S.; Addicoat M. A.; Brady M. A.; Xu H.; Nakamura T.; Heine T.; Chen Q.; Jiang D. Science 2017, 357, 673. |
[10] | (b) Ding H.; Li J.; Xie G.; Lin G.; Chen R.; Peng Z.; Yang C.; Wang B.; Sun J.; Wang C. Nat. Commun. 2018, 9, 5234. |
[10] | (c) Jakowetz A. C.; Hinrichsen T. F.; Ascherl L.; Sick T.; Calik M.; Auras F.; Medina D. D.; Friend R. H.; Rao A.; Bein T. J. Am. Chem. Soc. 2019, 141, 11565. |
[10] | (d) Qi M.; Zhou Y.; Lv Y.; Chen W.; Su X.; Zhang T.; Xing G.; Xu G.; Terasaki O.; Chen L. J. Am. Chem. Soc. 2023, 145, 2739. |
[11] | (a) Zhang Q.; Dong S.; Shao P.; Zhu Y.; Mu Z.; Sheng D.; Zhang T.; Jiang X.; Shao R.; Ren Z.; Xie J.; Feng X.; Wang B. Science 2022, 378, 181. |
[11] | (b) Li X.; Wang H.; Chen H.; Zheng Q.; Zhang Q.; Mao H.; Liu Y.; Cai S.; Sun B.; Dun C.; Gordon M. P.; Zheng H.; Reimer J. A.; Urban J. J.; Ciston J.; Tan T.; Chan E. M.; Zhang J.; Liu Y. Chem 2020, 6, 933. |
[11] | (c) Yang X.; Hu Y.; Dunlap N.; Wang X.; Huang S.; Su Z.; Sharma S.; Jin Y.; Huang F.; Wang X.; Lee S.-H.; Zhang W. Angew. Chem., Int. Ed. 2020, 59, 20385. |
[11] | (d) Wu C.; Liu Y.; Liu H.; Duan C.; Pan Q.; Zhu J.; Hu F.; Ma X.; Jiu T.; Li Z.; Zhao Y. J. Am. Chem. Soc. 2018, 140, 10016. |
[11] | (e) Peng Z.; Ding H.; Chen R.; Gao C.; Wang C. Acta Chim. Sinica 2019, 77, 681. (in Chinese) |
[11] | (彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77, 681.) |
[12] | (a) Du Y. D.; Zhou C. Y.; To W. P.; Wang H. X.; Che C. M. Chem. Sci. 2020, 11, 4680. |
[12] | (b) Li L. L.; Diau E. W. Chem. Soc. Rev. 2013, 42, 291. |
[12] | (c) Najafpour M. M.; Renger G.; Holynska M.; Moghaddam A. N.; Aro E. M.; Carpentier R.; Nishihara H.; Eaton-Rye J. J.; Shen J. R.; Allakhverdiev S. I. Chem. Rev. 2016, 116, 2886. |
[12] | (d) Zhang W.; Lai W.; Cao R. Chem. Rev. 2017, 117, 3717. |
[13] | Urbani M.; Gratzel M.; Nazeeruddin M. K.; Torres T. Chem. Rev. 2014, 114, 12330. |
[14] | (a) Drain C. M.; Varotto V.; Radivojevi I. Chem. Rev. 2009, 109, 1631. |
[14] | (b) Gao W. Y.; Chrzanowski M.; Ma S. Chem. Soc. Rev. 2014, 43, 5841. |
[14] | (c) Hasobe T. Phys. Chem. Chem. Phys. 2012, 14, 15975. |
[14] | (d) Jiang Z. W.; Zou Y. C.; Zhao T. T.; Zhen S. J.; Li Y. F.; Huang C. Z. Angew. Chem., Int. Ed. 2020, 59, 3300. |
[15] | (a) Chen R.; Shi J. L.; Ma Y.; Lin G.; Lang X.; Wang C. Angew. Chem., Int. Ed. 2019, 58, 6430. |
[15] | (b) Meng Y.; Luo Y.; Shi J. L.; Ding H.; Lang X.; Chen W.; Zheng A.; Sun J.; Wang C. Angew. Chem., Int. Ed. 2020, 59, 3624. |
[15] | (c) Sun N.; Jin Y.; Wang H.; Yu B.; Wang R.; Wu H.; Zhou W.; Jiang J. Chem. Mater. 2022, 34, 1956. |
[15] | (d) Jin F.; Lin E.; Wang T.; Yan D.; Yang Y.; Chen Y.; Cheng P.; Zhang Z. Chem 2022, 8, 3064. |
[15] | (e) Gong Y. N.; Zhong W.; Li Y.; Qiu Y.; Zheng L.; Jiang J.; Jiang H. L. J. Am. Chem. Soc. 2020, 142, 16723. |
[15] | (f) Lu M.; Liu J.; Li Q.; Zhang M.; Liu M.; Wang J. L.; Yuan D. Q.; Lan Y. Q. Angew. Chem., Int. Ed. 2019, 58, 12392. |
[15] | (g) Xu X.; Cai P.; Chen H.; Zhou H. C.; Huang N. J. Am. Chem. Soc. 2022, 144, 18511. |
[15] | (h) Ding J.; Guan X.; Lv J.; Chen X.; Zhang Y.; Li H.; Zhang D.; Qiu S.; Jiang H. L.; Fang Q. J. Am. Chem. Soc. 2023, 145, 3248. |
[16] | (a) Wu Q. J.; Liang J.; Huang Y. B.; Cao R. Acc. Chem. Res. 2022, 55, 2978. |
[16] | (b) Wang K.; Qi D. D.; Li Y. L.; Wang T. Y.; Liu H. B.; Jiang J. Z. Coord. Chem. Rev. 2019, 378, 188. |
[17] | (a) Francis Kurisingal J.; Kim H.; Hyeak Choe J.; Seop Hong C. Coord. Chem. Rev. 2022, 473, 214835. |
[17] | (b) He Z.; Goulas J.; Parker E.; Sun Y.; Zhou X.-D.; Fei L. Catal. Today 2023, 409, 103. |
[18] | (a) Wang X.; Ding X.; Wang T.; Wang K.; Jin Y.; Han Y.; Zhang P.; Li N.; Wang H.; Jiang J. ACS Appl. Mater. Interfaces 2022, 14, 41122. |
[18] | (b) Dong M.; Li W.; Zhou J.; You S. Q.; Sun C. Y.; Yao X. H.; Qin C.; Wang X. L.; Su Z. M. Chin. J. Chem. 2022, 40, 2678. |
[18] | (c) Yu X.; Huang W.; Li Y. G. Acta Chim. Sinica 2022, 80, 1494. (in Chinese) |
[18] | (于潇涵, 黄伟, 李彦光, 化学学报, 2022, 80, 1494.) |
[18] | (d) Chen Q.; Kuang Q.; Xie Z. X. Acta Chim. Sinica 2021, 79, 10. (in Chinese) |
[18] | (陈钱, 匡勤, 谢兆雄, 化学学报, 2021, 79, 10.) |
[19] | (a) Song D.; Xu W.; Li J.; Zhao J.; Shi Q.; Li F.; Sun X.; Wang N. Chin. J. Catal. 2022, 43, 2425. |
[19] | (b) Skorjanc T.; Shetty D.; Mahmoud M. E.; Gandara F.; Martinez J. I.; Mohammed A. K.; Boutros S.; Merhi A.; Shehayeb E. O.; Sharabati C. A.; Damacet P.; Raya J.; Gardonio S.; Hmadeh M.; Kaafarani B. R.; Trabolsi A. ACS Appl. Mater. Interfaces 2022, 14, 2015. |
[19] | (c) Gong L. J.; Liu L. Y.; Zhao S. S.; Yang S. L.; Si D. H.; Wu Q. J.; Wu Q.; Huang Y. B.; Cao R. Chem. Eng. J. 2023, 458, 141360. |
[20] | (a) Wang L.; Huang G.; Zhang L.; Lian R.; Huang J.; She H.; Liu C.; Wang Q. J. Energy Chem. 2022, 64, 85. |
[20] | (b) Zou L.; Sa R.; Zhong H.; Lv H.; Wang X.; Wang R. ACS Catal. 2022, 12, 3550. |
[21] | (a) Ye S.; Ding C.; Liu M.; Wang A.; Huang Q.; Li C. Adv. Mater. 2019, 31, 1902069. |
[21] | (b) Tao X.; Zhao Y.; Wang S.; Li C.; Li R. Chem. Soc. Rev. 2022, 51, 3561. |
[21] | (c) Qi Y.; Zhang F. Acta Chim. Sinica 2022, 80, 827. (in Chinese) |
[21] | (祁育, 章福祥, 化学学报, 2022, 80, 827.) |
[22] | (a) Chen R.; Wang Y.; Ma Y.; Mal A.; Gao X. Y.; Gao L.; Qiao L.; Li X. B.; Wu L. Z.; Wang C. Nat. Commun. 2021, 12, 1354. |
[22] | (b) Xu Z.; Cui X.; Li Y.; Li Y.; Si Z.; Duan Q. Appl. Surf. Sci. 2023, 613, 155966. |
[22] | (c) Lv M.; Ren X.; Cao R.; Chang Z.; Chang X.; Bai F.; Li Y. Polymers 2022, 14, 4893. |
[23] | (a) Wu S.; Zhang Y. F.; Ding H.; Li X.; Lang X. J. Colloid Interface Sci. 2022, 610, 446. |
[23] | (b) Li P.; Dong X.; Zhang Y.; Lang X.; Wang C. Mater. Today Chem. 2022, 25, 100953. |
[23] | (c) Shi J. L.; Chen R.; Hao H.; Wang C.; Lang X. Angew. Chem., Int. Ed. 2020, 59, 908. |
[24] | (a) Feng K.; Hao H.; Huang F.; Lang X.; Wang C. Mater. Chem. Front. 2021, 5, 2255. |
[24] | (b) Shan H.; Cai D.; Zhang X.; Zhu Q.; Qin P.; Baeyens J. Chem. Eng. J. 2022, 432, 134288. |
[24] | (c) Kan X.; Wang J. C.; Chen Z.; Du J. Q.; Kan J. L.; Li W. Y.; Dong Y. B. J. Am. Chem. Soc. 2022, 144, 6681. |
[25] | Qian Y.; Li D.; Han Y.; Jiang H. L. J. Am. Chem. Soc. 2020, 142, 20763. |
[26] | Chen L.; Hang J.; Chen B.; Kang J.; Yan Z.; Wang Z.; Zhang Y.; Chen S.; Wang Y.; Jin Y.; Xia C. Chem. Eng. J. 2023, 454, 140378. |
/
〈 |
|
〉 |