Lewis酸碱对催化极性烯烃单体精准聚合的研究进展★
收稿日期: 2023-05-04
网络出版日期: 2023-06-07
基金资助
国家自然科学基金(22225104); 国家自然科学基金(22071077); 国家自然科学基金(21871107); 国家自然科学基金(21975102)
Research Progress in Precision Polymerization of Polar Olefin Monomers by Lewis Pairs★
Received date: 2023-05-04
Online published: 2023-06-07
Supported by
The National Natural Science Foundation of China(22225104); The National Natural Science Foundation of China(22071077); The National Natural Science Foundation of China(21871107); The National Natural Science Foundation of China(21975102)
Lewis酸碱对聚合(Lewis pair polymerization, LPP)是近年发展起来的新型聚合方法, 目前已广泛应用于极性烯烃类单体的聚合以及功能性材料的制备. 凭借独特的聚合机理和动力学特性, LPP展现出许多优于传统聚合方法的特点, 也解决了一系列困扰传统聚合方法的难题. 着眼于近年来国内外的重要研究成果, 此综述从分子量、分子量分布、立体结构、序列结构和拓扑结构等聚合物精准合成维度出发, 系统地归纳总结了Lewis酸碱对催化体系在极性烯烃类单体精准聚合上的研究进展, 并针对LPP在当前发展中存在的问题和挑战提出展望.
万义 , 何江华 , 张越涛 . Lewis酸碱对催化极性烯烃单体精准聚合的研究进展★[J]. 化学学报, 2023 , 81(9) : 1215 -1230 . DOI: 10.6023/A23050196
As a newly emerged polymerization strategy, Lewis pair polymerization (LPP) has been widely used in the polymerization of polar olefin monomers and the preparation of functional materials in recent years. With its unique polymerization mechanism and kinetic characteristics, LPP has shown many advantages over the traditional polymerization methods, and accomplished many challenging tasks in polymer synthesis. This review systematically summarizes the research progress of the precision polymerization of the polar olefin monomers into polymers catalyzed by Lewis pairs in terms of molecular weight, molecular weight distribution, stereochemistry, monomer sequence and polymer topology, and proposes the outlook for the problems and challenges existing in the development of LPP.
[1] | Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y.-X.; Leibfarth, F. A.; Sardon, H. Nature 2022, 603, 803. |
[2] | Cywar, R. M.; Rorrer, N. A.; Hoyt, C. B.; Beckham, G. T.; Chen, E. Y.-X. Nat. Rev. Mater. 2022, 7, 83. |
[3] | Andrady, A. L.; Neal, M. A. Phil. Trans. R. Soc. B 2009, 364, 1977. |
[4] | Hong, M.; Chen, J.; Chen, E. Y.-X. Chem. Rev. 2018, 118, 10551. |
[5] | Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2015, 54, 6400. |
[6] | Stephan, D. W. Science 2016, 354, aaf7229. |
[7] | Lam, J.; Szkop, K. M.; Mosaferi, E.; Stephan, D. W. Chem. Soc. Rev. 2019, 48, 3592. |
[8] | Guan, Y.; Chang, K.; Sun, Q.; Xu, X. Chin. J. Org. Chem. 2022, 42, 1326. (in Chinese) |
[8] | (管怡雯, 常克俭, 孙千林, 徐信, 有机化学, 2022, 42, 1326.) |
[9] | Zhang, Y.; Miyake, G. M.; Chen, E. Y.-X. Angew. Chem. Int. Ed. 2010, 49, 10158. |
[10] | Zhang, Y.; Miyake, G. M.; John, M. G.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y.-X. Dalton Trans. 2012, 41, 9119. |
[11] | He, J.; Zhang, Y.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y.-X. Macromolecules 2014, 47, 7765. |
[12] | Jia, Y.-B.; Wang, Y.-B.; Ren, W.-M.; Xu, T.; Wang, J.; Lu, X.-B. Macromolecules 2014, 47, 1966. |
[13] | Knaus, M. G. M.; Giuman, M. M.; P?thig, A.; Rieger, B. J. Am. Chem. Soc. 2016, 138, 7776. |
[14] | Xu, P.; Yao, Y.; Xu, X. Chemistry 2017, 23, 1263. |
[15] | Xu, T.; Li, C. Prog. Chem. 2015, 27, 1087. (in Chinese) |
[15] | (徐铁齐, 李长宏, 化学进展, 2015, 27, 1087.) |
[16] | Zhao, W.; He, J.; Zhang, Y. Sci. Bull. 2019, 64, 1830. |
[17] | Bai, Y.; Zhang, Y.-T. Acta Polymerica Sinica 2019, 50, 233. (in Chinese) |
[17] | (白云, 张越涛, 高分子学报, 2019, 50, 233.) |
[18] | Wang, Q.; Zhao, W.; Zhang, S.; He, J.; Zhang, Y.; Chen, E. Y.-X. ACS Catal. 2018, 8, 3571. |
[19] | Wang, H.; Wang, Q.; He, J.; Zhang, Y. Polym. Chem. 2019, 10, 3597. |
[20] | Jia, Y.-B.; Ren, W.-M.; Liu, S.-J.; Xu, T.; Wang, Y.-B.; Lu, X.-B. ACS Macro Lett 2014, 3, 896. |
[21] | Zhang, P.; Zhou, H.; Lu, X.-B. Macromolecules 2019, 52, 4520. |
[22] | Zhao, W.; Wang, Q.; He, J.; Zhang, Y. Polym. Chem. 2019, 10, 4328. |
[23] | Bai, Y.; He, J.; Zhang, Y. Angew. Chem. Int. Ed. 2018, 57, 17230. |
[24] | Weiss, C. J.; Marks, T. J. Dalton Trans. 2010, 39, 6576. |
[25] | Xu, T.; Chen, E. Y.-X. J. Am. Chem. Soc. 2014, 136, 1774. |
[26] | Hu, L.; He, J.; Zhang, Y.; Chen, E. Y.-X. Macromolecules 2018, 51, 1296. |
[27] | Hu, L.; Zhao, W.; He, J.; Zhang, Y. Molecules 2018, 23, 665. |
[28] | Bai, Y.; Wang, H.; He, J.; Zhang, Y. Polym. Chem. 2021, 12, 5548. |
[29] | Baskaran, D. Prog. Polym. Sci. 2003, 28, 521. |
[30] | Zhang, Z.-H.; Wang, X.; Wang, X.-J.; Li, Y.; Hong, M. Macromolecules 2021, 54, 8495. |
[31] | Zhang, Z.-H.; Wang, X.; Weng, B.; Zhang, Y.; Zhang, G.; Hong, M. ACS Polym. Au 2022, 2, 266. |
[32] | Zhang, Z.-X.; Wu, X.-Y.; Hong, M. Acta Polymerica Sinica 2022, 53, 1150. (in Chinese) |
[32] | (张振兴, 吴小余, 洪缪, 高分子学报, 2022, 53, 1150.) |
[33] | Beyer, V. P.; Kim, J.; Becer, C. R. Polym. Chem. 2020, 11, 1271. |
[34] | Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H. Science 2012, 336, 434. |
[35] | Bai, Y.; Wang, H.; He, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 11613. |
[36] | Wan, X.-H. Acta Polymerica Sinica 2020, 51, 569. (in Chinese) |
[36] | (宛新华, 高分子学报, 2020, 51, 569.) |
[37] | Engelis, N. G.; Anastasaki, A.; Nurumbetov, G.; Truong, N. P.; Nikolaou, V.; Shegiwal, A.; Whittaker, M. R.; Davis, T. P.; Haddleton, D. M. Nat. Chem. 2017, 9, 171. |
[38] | Gody, G.; Maschmeyer, T.; Zetterlund, P. B.; Perrier, S. Nat. Commun. 2013, 4, 2505. |
[39] | Mcgraw, M. L.; Clarke, R. W.; Chen, E. Y.-X. J. Am. Chem. Soc. 2020, 142, 5969. |
[40] | Li, C.; Zhao, W.; He, J.; Zhang, Y.; Zhang, W. Angew. Chem. Int. Ed. 2022, 61, e202202448. |
[41] | Bai, Y.; Wang, H.; He, J.; Zhang, Y.; Chen, E. Y.-X. Nat. Commun. 2021, 12, 4874. |
[42] | Wan, Y.; He, J.; Zhang, Y.; Chen, E. Y.-X. Angew. Chem. Int. Ed. 2022, 61, e202114946. |
[43] | Reilly, L. T.; Mcgraw, M. L.; Eckstrom, F. D.; Clarke, R. W.; Franklin, K. A.; Chokkapu, E. R.; Cavallo, L.; Falivene, L.; Chen, E. Y.-X. J. Am. Chem. Soc. 2022, 144, 23572. |
[44] | Wan, Y.; He, J.; Zhang, Y. Angew. Chem. Int. Ed. 2023, 62, e202218248. |
[45] | Kametani, Y.; Tournilhac, F.; Sawamoto, M.; Ouchi, M. Angew. Chem. Int. Ed. 2020, 59, 5193. |
[46] | Shibata, K.; Kametani, Y.; Daito, Y.; Ouchi, M. J. Am. Chem. Soc. 2022, 144, 9959. |
[47] | Gerdt, P.; Studer, A. Angew. Chem. Int. Ed. 2022, 61, e202206964. |
[48] | Zhao, W.; Li, F.; Li, C.; He, J.; Zhang, Y.; Chen, C. Angew. Chem. Int. Ed. 2022, 60, 24306. |
[49] | Wang, X.; Hong, M. Macromolecules 2020, 53, 4659. |
[50] | Zhou, Y.; Jiang, S.; Xu, X. Chin. J. Chem. 2020, 39, 149. |
[51] | Guan, Z. Chem. Asian. J. 2010, 5, 1058. |
[52] | Doi, Y.; Matsubara, K.; Ohta, Y.; Nakano, T.; Kawaguchi, D.; Takahashi, Y.; Takano, A.; Matsushita, Y. Macromolecules 2015, 48, 3140. |
[53] | Gambino, T.; Martínez De Ilarduya, A.; Alegría, A.; Barroso-Bujans, F. Macromolecules 2016, 49, 1060. |
[54] | Hosoi, Y.; Takasu, A.; Matsuoka, S.-I.; Hayashi, M. J. Am. Chem. Soc. 2017, 139, 15005. |
[55] | Oga, Y.; Hosoi, Y.; Takasu, A. Polymer 2020, 186, 122019. |
[56] | Mcgraw, M. L.; Clarke, R. W.; Chen, E. Y.-X. J. Am. Chem. Soc. 2021, 143, 3318. |
[57] | Zhao, W.; Wang, Q.; He, J.; Zhang, Y. Macromol. Rapid Commun. 2022, 43, e2200088. |
[58] | Mcgraw, M. L.; Reilly, L. T.; Clarke, R. W.; Cavallo, L.; Falivene, L.; Chen, E. Y.-X. Angew. Chem. Int. Ed. 2022, 61, e202116303. |
[59] | Song, Y.; He, J.; Zhang, Y.; Gilsdorf, R. A.; Chen, E. Y.-X. Nat. Chem. 2023, 15, 366. |
[60] | Wang, X.-H.; Wan, X.-H. Acta Polymerica Sinica 2023, 54, 409. (in Chinese) |
[60] | (王献红, 宛新华, 高分子学报, 2023, 54, 409.) |
/
〈 |
|
〉 |