化学生物学解析疾病中O-GlcNAc糖基化功能: 研究工具与策略
收稿日期: 2023-02-19
网络出版日期: 2023-06-07
基金资助
国家自然科学基金(21975163); 国家自然科学基金(32171282)
Application of Chemical Biology to Reveal the Function of O-GlcNAcylation in Diseases: Research Tools and Tactics
Received date: 2023-02-19
Online published: 2023-06-07
Supported by
National Natural Science Foundation of China(21975163); National Natural Science Foundation of China(32171282)
O-连接β-N-乙酰葡糖胺(O-GlcNAc)糖基化是广泛存在于蛋白质丝/苏氨酸残基的翻译后修饰. 这一动态、可逆单糖修饰以位点特异性方式影响底物蛋白的结构和生物学功能, 参与调控几乎所有细胞生理过程和重大疾病的演进过程. 随着研究深入, O-GlcNAc糖基化生物功能的系统解析需要更多特异、精准的研究工具和糖蛋白质组学研究策略. 近年来, 化学生物学领域开发了包括小分子糖探针、生物正交糖代谢标记物、化学酶法、特异性抗体和凝集素等多种O-GlcNAc糖基化分析工具和方法, 以此为基础进一步发展了O-GlcNAc糖蛋白质组学研究策略. 同时, 借助高分辨质谱, 大量蛋白质O-GlcNAc修饰位点得以鉴定, 极大促进了位点特异性O-GlcNAc的生物功能研究. 本文综述了近年来这一领域的研究进展, 以期为更多化学工具的开发提供依据, 为揭示O-GlcNAc糖基化在疾病演进中的功能提供新的研究思路和策略.
关键词: O-GlcNAc糖基化; 化学生物学; 分子工具; 糖蛋白质组学
张娜娜 , 于恺然 , 李际婷 , 张嘉宁 , 刘宇博 . 化学生物学解析疾病中O-GlcNAc糖基化功能: 研究工具与策略[J]. 化学学报, 2023 , 81(7) : 843 -856 . DOI: 10.6023/A23020040
The addition of O-linked-β-N-acetylglucosamine (O-GlcNAc) onto serine and threonine residues of nuclear and cytoplasmic proteins is an abundant and unique post-translational modification that plays a critical role in governing important biological processes. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular processes, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. O-GlcNAcylation is a dynamic and reversible post-translational modification that regulates protein function in a site-specific manner, making it an important player in the regulation of diverse biological processes. Dysregulation of O-GlcNAcylation has been implicated in the pathogenesis of various diseases, including cancer, neurodegenerative disorders, and diabetes. To better understand the regulatory roles of O-GlcNAcylation in cellular physiology and disease pathogenesis, O-GlcNAc proteomics strategies and more specialized, more exact research tools are needed to further explore the bio-functional systematization of O-GlcNAcylation. In recent years, the field of chemical biology has developed various tools and methods for analyzing O-GlcNAc glycosylation, including small molecule sugar probes, metabolic labeling reagents, chemoenzymatic techniques, specific antibodies, and lectins. These tools have served as a foundation for the further development of O-GlcNAc glycoproteomic research strategies. O-GlcNAc glycoproteomic strategies, such as high-resolution mass spectrometry-based approaches have been developed to allow for the detection and quantification of O-GlcNAc modifications on specific proteins, enabling site-specific analysis of O-GlcNAc modification patterns. The number of proteins modified by O-GlcNAc is quite extensive, with at least 7000 modification sites identified in human cells. This highlights the importance of O-GlcNAcylation in regulating diverse biological processes. Identification of O-GlcNAcylation sites with specific biological functions is still a remaining problem. Innovative solutions are required to address this challenge in cell models and disease therapy. At the same time, with the aid of high-resolution mass spectrometry, a large number of O-GlcNAc modification sites on proteins have been identified, which has greatly promoted the study of site-specific O-GlcNAc biological functions. This article has reviewed the recent advances in the field of O-GlcNAc research, with the aim of providing a basis for the development of more chemical tools and offering new research ideas and strategies for uncovering the functions of O-GlcNAcylation in disease progression.
Key words: O-GlcNAcylation; chemical biology; molecular tools; glycoproteomics
[1] | Holt G. D.; Hart G. W. J. Biol. Chem. 1986, 261, 8049. |
[2] | Shi Q.; Shen Q.; Liu Y. Cancer Cell 2022, 40, 1207. |
[3] | Hart G. W.; Akimoto Y. The O-GlcNAc Modification, Ed.: Varki, A., New York, 2009, Chapter 18. |
[4] | Peterson S. B.; Hart G. W. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 150. |
[5] | Vaidyanathan K.; Wells L. J. Biol. Chem. 2014, 289, 34466. |
[6] | Akan I.; Olivier-Van Stichelen S.; Bond M. R. J. Neurochem. 2018, 144, 7. |
[7] | Banerjee P. S.; Lagerl?f O.; Hart G. W. Mol. Aspects Med. 2016, 51, 1. |
[8] | Nie H.; Yi W. J. Zhejiang Univ. Sci. B 2019, 20, 437. |
[9] | Phueaouan T.; Chaiyawat P.; Netsirisawan P. Oncol. Rep. 2013, 30, 2929. |
[10] | Ma Z.; Vocadlo D. J.; Vosseller K. J. Biol. Chem. 2013, 288, 15121. |
[11] | Jin F. Z.; Yu C.; Zhao D. Z. Exp. Cell Res. 2013, 319, 1482. |
[12] | Huang X.; Pan Q.; Sun D. J. Biol. Chem. 2013, 288, 36418. |
[13] | Shi Y.; Tomic J.; Wen F. Leukemia 2010, 24, 1588. |
[14] | Dauphinee S. M.; Ma M.; Too C. K. J. Cell Biochem. 2005, 96, 579. |
[15] | Slawson C.; Hart G. W. Nat. Rev. Cancer 2011, 11, 678. |
[16] | Shafi R.; Iyer S. P.; Ellies L. G. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 5735. |
[17] | Yang Y. R.; Song M.; Lee H. Aging Cell 2012, 11, 439. |
[18] | Ferrer C. M.; Lynch T. P.; Sodi V. L. Mol. Cell 2014, 54, 820. |
[19] | Alteen M. G.; Tan H. Y.; Vocadlo D. J. Curr. Opin. Struct. Biol. 2021, 68, 157. |
[20] | Wang Y. Acta Chim. Sinica 2013, 71, 1477. (in Chinese) |
[20] | (王玥, 化学学报, 2013, 71, 1477.) |
[21] | Konrad R. J.; Zhang F.; Hale J. E. Biochem. Biophys. Res. Commun. 2002, 293, 207. |
[22] | Vibjerg Jensen R.; Johnsen J.; Buus Kristiansen S. Scand Cardiovasc J. 2013, 47, 168. |
[23] | Borodkin V. S.; Schimpl M.; Gundogdu M. Biochem. J. 2014, 457, 497. |
[24] | Gloster T. M.; Zandberg W. F.; Heinonen J. E. Nat. Chem. Biol. 2011, 7, 174. |
[25] | Sodi V. L.; Bacigalupa Z. A.; Ferrer C. M. Oncogene 2018, 37, 924. |
[26] | Liu T. W.; Zandberg W. F.; Gloster T. M. Angew. Chem. Int. Ed. 2018, 57, 7644. |
[27] | Rafie K.; Gorelik A.; Trapannone R. Bioconjug. Chem. 2018, 29, 1834. |
[28] | Gross B. J.; Kraybill B. C.; Walker S. J. Am. Chem. Soc. 2005, 127, 14588. |
[29] | Jiang J.; Lazarus M. B.; Pasquina L. Nat. Chem. Biol. 2011, 8, 72. |
[30] | Ortiz-Meoz R. F.; Jiang J.; Lazarus M. B. ACS Chem. Biol. 2015, 10, 1392. |
[31] | Rahman M. A.; Cho Y.; Hwang H. Brain Sci. 2020, 10, 958. |
[32] | Liu Y.; Cao Y.; Pan X. Cell Death Dis. 2018, 9, 485. |
[33] | Lee S. J.; Lee D. E.; Choi S. Y. Int. J. Mol. Sci. 2021, 22, 11073. |
[34] | Lee S. J.; Kwon O. S. Cancers (Basel) 2020, 12, 3154. |
[35] | Luanpitpong S.; Kang X.; Janan M. Stem Cell Res. Ther. 2022, 13, 274. |
[36] | Martin S. E. S.; Tan Z.-W.; Itkonen H. M. J. Am. Chem. Soc. 2018, 140, 13542. |
[37] | Liu X.; Song S.; Chen Z. Acta Biomater. 2022, 151, 148. |
[38] | Wang Y.; Zhu J.; Zhang L. J. Med. Chem. 2017, 60, 263. |
[39] | Liu Y.; Ren Y.; Cao Y. Sci. Rep. 2017, 7, 12334. |
[40] | (a) Liu Y. B.; Zhang N. N.; Chen J. J. Chem. J. Chinese Univ. 2018, 39, 1185. (in Chinese) |
[40] | (刘宇博, 张娜娜, 陈锦娇, 高等学校化学学报, 2018, 39, 1185.) |
[40] | (b) Liu X.; Zhang N.; Cao Y. Chin. Pharmacol. Bull. 2020, 36, 1574. (in Chinese) |
[40] | (刘欣, 张娜娜, 曹禺, 中国药理学通报, 2020, 36, 1574.) |
[41] | Zhang N.; Zhu T.; Yu K. Cell Death Dis. 2019, 10, 343. |
[42] | Huang H.; Wu Q.; Guo X. J. Cell Physiol. 2021, 236, 7491. |
[43] | Albuquerque S. O.; Barros T. G.; Dias L. R. S. Eur. J. Pharm. Sci. 2020, 154, 105510. |
[44] | Horsch M.; Hoesch L.; Vasella A. Eur. J. Biochem. 1991, 197, 815. |
[45] | Laczy B.; Marsh S. A.; Brocks C. A. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1715. |
[46] | Macauley M. S.; Whitworth G. E.; Debowski A. W. J. Biol. Chem. 2005, 280, 25313. |
[47] | Macauley M. S.; He Y.; Gloster T. M. Chem. Biol. 2010, 17, 937. |
[48] | Dorfmueller H. C.; Borodkin V. S.; Schimpl M. J. Am. Chem. Soc. 2006, 128, 16484. |
[49] | Yuzwa S. A.; Macauley M. S.; Heinonen J. E. Nat. Chem. Biol. 2008, 4, 483. |
[50] | Hilgers R. H.; Xing D.; Gong K. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, H513. |
[51] | Zhu Q.; Zhou H.; Wu L. Nat. Chem. Biol. 2022, 18, 1087. |
[52] | Selnick H. G.; Hess J. F.; Tang C. J. Med. Chem. 2019, 62, 10062. |
[53] | Yang Y.; Li X.; Luan H. H. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 16616. |
[54] | Martínez-Viturro C. M.; Trabanco A. A.; Royes J. J. Med. Chem. 2020, 63, 14017. |
[55] | González-Cuesta M.; Sidhu P.; Ashmus R. A. J. Am. Chem. Soc. 2022, 144, 832. |
[56] | Klein A. L.; Berkaw M. N.; Buse M. G. Mol. Cell. Proteomics 2009, 8, 2733. |
[57] | Snow C. M.; Senior A.; Gerace L. J. Cell. Biol. 1987, 104, 1143. |
[58] | Comer F. I.; Vosseller K.; Wells L. Anal. Biochem. 2001, 293, 169. |
[59] | Turner J. R.; Tartakoff A. M.; Greenspan N. S. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 5608. |
[60] | Yoshida N.; Mortara R. A.; Araguth M. F. Infect Immun, 1989, 57, 1663. |
[61] | Teo C. F.; Ingale S.; Wolfert M. A. Nat. Chem. Biol. 2010, 6, 338. |
[62] | Kamemura K.; Hayes B. K.; Comer F. I. J. Biol. Chem. 2002, 277, 19229. |
[63] | Yuzwa S. A.; Yadav A. K.; Skorobogatko Y. Amino Acids 2011, 40, 857. |
[64] | Hirosawa M.; Hayakawa K.; Yoneda C. Sci. Rep. 2016, 6, 31785. |
[65] | Pathak S.; Borodkin V. S.; Albarbarawi O. Embo J. 2012, 31, 1394. |
[66] | Fujioka K.; Kubota Y.; Takekawa M. Bio-protocol 2018, 8, e3098. |
[67] | Soesanto Y. A.; Luo B.; Jones D. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E974. |
[68] | Diwu Y.; Tian J.; Shi J. J. Tradit. Chin. Med. 2013, 33, 367. |
[69] | Ma Z. Y.; Skorobogatko Y.; Vosseller K. Methods Mol. Biol. 2013, 951, 21. |
[70] | Vosseller K.; Trinidad J. C.; Chalkley R. J. Mol. Cell. Proteomics 2006, 5, 923. |
[71] | Liu W.; Han G.; Yin Y. Glycobiology 2018, 28, 363. |
[72] | Su Y.; Ye X.; Xu B. Glycobiology 2020, 30, 159. |
[73] | Schimpl M.; Borodkin V. S.; Gray L. J. Chem. Biol. 2012, 19, 173. |
[74] | Mariappa D.; Selvan N.; Borodkin V. Biochem. J. 2015, 470, 255. |
[75] | Selvan N.; Williamson R.; Mariappa D. Nat. Chem. Biol. 2017, 13, 882. |
[76] | Song J.; Liu C.; Wang X. ACS Chem. Biol. 2021, 16, 1040. |
[77] | Isono T. PLOS ONE 2011, 6, e18959. |
[78] | Gilormini P. A.; Batt A. R.; Pratt M. R. Chem. Sci. 2018, 9, 7585. |
[79] | Cheng B.; Tang Q.; Zhang C. Annu. Rev. Anal. Chem. (Palo Alto Calif) 2021, 14, 363. |
[80] | Vocadlo D. J.; Hang H. C.; Kim E. J. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 9116. |
[81] | Yu S. H.; Boyce M.; Wands A. M. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 4834. |
[82] | Zhu Y.; Wu J.; Chen X. Angew. Chem. Int. Ed. 2016, 55, 9301. |
[83] | Hang H. C.; Yu C.; Kato D. L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 14846. |
[84] | Boyce M.; Carrico I. S.; Ganguli A. S. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 3141. |
[85] | Xu S.; Zheng J.; Xiao H. Anal. Chem. 2022, 94, 3343. |
[86] | Zhu Y.; Willems L. I.; Salas D. J. Am. Chem. Soc. 2020, 142, 15729. |
[87] | Lin W.; Gao L.; Chen X. ChemBioChem 2015, 16, 2571. |
[88] | Qin W.; Qin K.; Fan X. Angew. Chem. Int. Ed. 2018, 57, 1817. |
[89] | Hao Y.; Fan X.; Shi Y. Nat. Commun. 2019, 10, 4065. |
[90] | Qin K.; Zhang H.; Zhao Z. J. Am. Chem. Soc. 2020, 142, 9382. |
[91] | Zaro B. W.; Yang Y. Y.; Hang H. C. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 8146. |
[92] | Chuh K. N.; Zaro B. W.; Piller F. J. Am. Chem. Soc. 2014, 136, 12283. |
[93] | Chuh K. N.; Batt A. R.; Zaro B. W. J. Am. Chem. Soc. 2017, 139, 7872. |
[94] | Darabedian N.; Gao J.; Chuh K. N. J. Am. Chem. Soc. 2018, 140, 7092. |
[95] | Pedowitz N. J.; Jackson E. G.; Overhulse J. M. ACS Chem. Biol. 2021, 16, 1924. |
[96] | Lin W.; Gao L.; Chen X. Chembiochem 2015, 16, 2571. |
[97] | Torres C. R.; Hart G. W. J. Biol. Chem. 1984, 259, 3308. |
[98] | Khidekel N.; Arndt S.; Lamarre-Vincent N. J. Am. Chem. Soc. 2003, 125, 16162. |
[99] | Clark P. M.; Dweck J. F.; Mason D. E. J. Am. Chem. Soc. 2008, 130, 11576. |
[100] | Balana A. T.; Mukherjee A.; Nagpal H. J. Am. Chem. Soc. 2021, 143, 16030. |
[101] | Khidekel N.; Ficarro S. B.; Peters E. C. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 13132. |
[102] | Aguilar A. L.; Hou X.; Wen L. Chembiochem 2017, 18, 2416. |
[103] | Tian Y.; Zhu Q.; Sun Z. Angew. Chem. Int. Ed. 2021, 60, 26128. |
[104] | Chen Y.; Tang F.; Qin H. Angew. Chem. Int. Ed. 2022, 61, e202117849. |
[105] | Rexach J. E.; Rogers C. J.; Yu S. H. Nat. Chem. Biol. 2010, 6, 645. |
[106] | Darabedian N.; Thompson J. W.; Chuh K. N. Biochemistry 2018, 57, 5769. |
[107] | Qin W.; Lv P.; Fan X. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E6749. |
[108] | Ma J.; Hart G. W. Clin. Proteomics 2014, 11, 8. |
[109] | Thompson J. W.; Sorum A. W.; Hsieh-Wilson L. C. Biochemistry 2018, 57, 4010. |
[110] | Maynard J. C.; Chalkley R. J. Mol. Cell. Proteomics 2021, 20, 100031. |
[111] | Ma J.; Wu C.; Hart G. W. Chem. Rev. 2021, 121, 1513. |
[112] | Li Y. Y.; Peng Y.; Lu H. J. Acta Chim. Sinica 2021, 79, 705. (in Chinese) |
[112] | (李月悦, 彭叶, 陆豪杰, 化学学报, 2021, 79, 705.) |
[113] | Xu S.; Tong M.; Suttapitugsakul S. Cell Rep. 2022, 39, 110946. |
[114] | Hahne H.; Sobotzki N.; Nyberg T. J. Proteome Res. 2013, 12, 927. |
[115] | Liu J.; Shao X.; Qin W. Cell Chem. Biol. 2021, 28, 788. |
[116] | Liu Y.; Chen Q.; Zhang N. Nat. Commun. 2020, 11, 5898. |
[117] | He J.; Fan Z.; Tian Y. J. Am. Chem. Soc. 2022, 144, 4289. |
[118] | Liu Y.; Nelson Z. M.; Reda A. ACS Chem. Biol. 2022, 17, 2153. |
[119] | Banerjee P. S.; Hart G. W.; Cho J. W. Chem. Soc. Rev. 2013, 42, 4345. |
[120] | Wulff-Fuentes E.; Berendt R. R.; Massman L. Sci. Data 2021, 8, 25. |
[121] | Ma J.; Li Y.; Hou C. Glycobiology 2021, 31, 719. |
[122] | Woo C. M.; Lund P. J.; Huang A. C. Mol. Cell. Proteomics 2018, 17, 764. |
[123] | Zhao P.; Viner R.; Teo C. F. J. Proteome Res. 2011, 10, 4088. |
[124] | Zhang Y.; Xie X.; Zhao X. J. Proteomics 2018, 170, 14. |
[125] | Marino F.; Bern M.; Mommen G. P. M. J. Am. Chem. Soc. 2015, 137, 10922. |
[126] | Liu J.; Hao Y.; He Y. ACS Chem. Biol. 2021, 16, 1917. |
[127] | Santala V.; Saviranta P. J. Immunol. Methods 2004, 284, 159. |
[128] | Wang Z.; Udeshi N. D.; O'Malley M. Mol. Cell. Proteomics 2010, 9, 153. |
[129] | Li J.; Li Z.; Duan X. ACS Chem. Biol. 2019, 14, 4. |
[130] | Khidekel N.; Ficarro S. B.; Clark P. M. Nat. Chem. Biol. 2007, 3, 339. |
[131] | Woo C. M.; Iavarone A. T.; Spiciarich D. R. Nat. Methods 2015, 12, 561. |
[132] | Wang S.; Yang F.; Petyuk V. A. J. Pathol. 2017, 243, 78. |
[133] | Liu J.; Hao Y.; Wang C. ACS Chem. Biol. 2022, 17, 513. |
[134] | Frenkel-Pinter M.; Richman M.; Belostozky A. Chemistry 2016, 22, 5945. |
[135] | Levine P. M.; Balana A. T.; Sturchler E. J. Am. Chem. Soc. 2019, 141, 14210. |
[136] | Lv P.; Du Y.; He C. Nat. Chem. 2022, 14, 831. |
[137] | Li J.; Li Z.; Duan X. ACS Chem. Biol. 2019, 14, 4. |
[138] | Yi W.; Clark P. M.; Mason D. E. Science 2012, 337, 975. |
[139] | Yang W. H.; Kim J. E.; Nam H. W. Nat. Cell Biol. 2006, 8, 1074. |
[140] | Gorelik A.; Bartual S. G.; Borodkin V. S. Nat. Struct. Mol. Biol. 2019, 26, 1071. |
[141] | Maynard J. C.; Burlingame A. L.; Medzihradszky K. F. Mol. Cell. Proteomics 2016, 15, 3405. |
[142] | Macauley M. S.; Stubbs K. A.; Vocadlo D. J. J. Am. Chem. Soc. 2005, 127, 17202. |
[143] | Tegl G.; Hanson J.; Chen H. M. Angew. Chem. Int. Ed. 2019, 58, 1632. |
[144] | Ramirez D. H.; Aonbangkhen C.; Wu H. Y. ACS Chem. Biol. 2020, 15, 1059. |
[145] | Ge Y.; Ramirez D. H.; Yang B. Nat. Chem. Biol. 2021, 17, 593. |
[146] | Gupta R.; Brunak S. Pac Symp Biocomput 2002, 310. |
[147] | Hamby S. E.; Hirst J. D. BMC Bioinformatics 2008, 9, 500. |
[148] | Hornbeck P. V.; Kornhauser J. M.; Latham V. Nucleic Acids Res. 2019, 47, D433. |
[149] | York W. S.; Mazumder R.; Ranzinger R. Glycobiology 2020, 30, 72. |
[150] | Huang K. Y.; Lee T. Y.; Kao H. J. Nucleic Acids Res. 2019, 47, D298. |
[151] | Cekic N.; Heinonen J. E.; Stubbs K. A. Chem. Sci. 2016, 7, 3742. |
/
〈 |
|
〉 |