研究论文

甘露糖修饰的微马达的制备及其免疫功能初探

  • 杜思南 ,
  • 赵丽曼 ,
  • 张泽新 ,
  • 陈国颂
展开
  • a 复旦大学 高分子科学系 聚合物分子工程国家重点实验室 上海 200433
    b 苏州大学 材料与化学化工学部 软凝聚态物理及交叉研究中心 苏州 215123
庆祝《化学学报》创刊90周年.

收稿日期: 2023-04-20

  网络出版日期: 2023-06-20

基金资助

国家重点研发计划项目(2022YFB3804401); 国家自然科学基金(52125303); 国家自然科学基金(51721002); 国家自然科学基金(91956127); 上海市教委科研创新计划项目(2023ZKZD02)

Preparation and Preliminary Study on Immune Function of Mannose-modified Micromotor

  • Sinan Du ,
  • Liman Zhao ,
  • Zexin Zhang ,
  • Guosong Chen
Expand
  • a The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science of Fudan University, Shanghai 200433
    b College of Chemistry, Chemical Engineering and Materials Science and Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215123
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-20

  Online published: 2023-06-20

Supported by

National Key Research and Development Program of China(2022YFB3804401); National Natural Science Foundation of China(52125303); National Natural Science Foundation of China(51721002); National Natural Science Foundation of China(91956127); Innovation Program of Shanghai Municipal Education Commission(2023ZKZD02)

摘要

为了开发集自驱动运动与免疫功能于一体的新型糖杂化材料, 本工作设计并制备了一种甘露糖修饰的哑铃形微马达(Zinc oxide/Polydopamine/Mannose微马达, 简称ZnO/PDA/Man微马达), 其不对称的哑铃结构会引起不均匀的离子分布, 从而促使马达运动. 该马达能量来源无生物毒性, 能够在可见光的照射下, 以纯水为燃料, 实现离子型自扩散泳运动. 通过调节可见光的强度和辐照方向, 可实现马达运动速度和方向的精准调控. ZnO/PDA/Man微马达具有良好的生物相容性, 且表面修饰生物活性的甘露糖苷可作为免疫激活剂使巨噬细胞极化. 相比于传统免疫激活剂, ZnO/PDA/Man微马达有望在可见光照射下, 实现肿瘤组织中的自由运动和深度渗透, 在肿瘤免疫治疗领域具有潜在的应用价值.

本文引用格式

杜思南 , 赵丽曼 , 张泽新 , 陈国颂 . 甘露糖修饰的微马达的制备及其免疫功能初探[J]. 化学学报, 2023 , 81(7) : 741 -748 . DOI: 10.6023/A23040151

Abstract

In order to develop a novel sugar hybrid material with self-actuated micromotor and immune function, we designed and prepared a dumbbell micromotor modified with mannose (Zinc oxide/Polydopamine/Mannose micromotor, ZnO/PDA/Man micromotor for short), which combines the kinetic properties of ZnO active colloid and visible light absorption properties of PDA materials. X-ray diffraction (XRD) and Raman spectroscopy results showed that the introduction of PDA and Man does not change the crystal shape of ZnO, which ensures that the photocatalytic activity of ZnO is unaffected in ZnO/PDA/Man. The dumbbell structure of the micromotor can cause an uneven distribution of ions, the ion gradient will drive micromotor to move. The micromotor energy source is non-toxic and can move itself in solution with pure water as fuel under visible light. The simulation verified that the motion mechanism of dumbbell micromotor is ionic self-diffusiophoresis, which keeps the head in front and pulls the colloid to move. The motion behavior of the micromotor under different intensities of visible light was observed and recorded by the microscope. It was found that the micromotor changed from translational motion to circular motion with the enhancement of light intensity, and the micromotor's motion speed also increased gradually. Meanwhile, by adjusting the direction of incident light, the motion direction of ZnO/PDA/Man micromotor can be accurately adjusted to make it move according to the predetermined route. In order to preliminarily explore whether the mannose-modified micromotor can regulate the phenotype of macrophages, the ZnO/PDA/Man micromotor was incubated with macrophages, and the morphological changes of macrophages were observed with a microscope. The results showed that the micromotor could be used as an immune activator to polarize macrophages. What'more, cytotoxicity experiment indicated that ZnO/PDA/Man micromotor has good biocompatibility. Compared with traditional immune activators, ZnO/PDA/Man micromotor is expected to realize free movement in tumor tissues under visible light irradiation, so as to promote their deep penetration into tumor tissues, which has potential application in the field of tumor immunotherapy.

参考文献

[1]
Karshalev E.; de Avila B. E.-F.; Wang J. J. Am. Chem. Soc. 2018, 140, 3810.
[2]
Luo M.; Feng Y.-Z.; Wang T.-W.; Guan J.-G. Adv. Funct. Mater. 2018, 28, 1706100.
[3]
Yasa I. C.; Ceylan H.; Bozuyuk U.; Wild A.-M.; Sitti M. Sci. Robot. 2020, 5, eaaz3867.
[4]
Wang J. ACS Nano 2009, 3, 4.
[5]
Li Y.-N.; Wu J.; Oku H.; Ma G.-H. Adv. Nanobiomed. Res. 2022, 2, 2200074.
[6]
Mao S.; Sun W.; Kissel T. Adv. Drug Delivery Rev. 2010, 62, 12.
[7]
Su L.; Li R.; Khan S.; Clanton R.; Zhang F.; Lin Y.-N.; Song Y.; Wang H.; Fan J.; Hernandez S.; Butters A. S.; Akabani G.; MacLoughlin R.; Smolen J.; Wooley K. L. J. Am. Chem. Soc. 2018, 140, 1438.
[8]
Yang Y. -Y.; Wang X.; Wu D. -C. Acta Chim. Sinica 2021, 79, 1. (in Chinese)
[8]
(杨艳宇, 王星, 吴德成, 化学学报, 2021, 79, 1.)
[9]
Zhao J.; Babiuch K.; Lu H.; Dag A.; Gottschaldt M.; Stenzel M. H. Chem. Commun. 2014, 50, 15928.
[10]
Choi K. Y.; Yoon H. Y.; Kim J.-H.; Bae S. M.; Park R.-W.; Kang Y. M.; Kim I.-S.; Kwon I. C.; Choi K.; Jeong S. Y.; Kim K.; Park J. H. ACS Nano 2011, 5, 8591.
[11]
Li Y.-Y.; Peng Y.; Lu H.-J. Acta Chim. Sinica 2021, 79, 705. (in Chinese)
[11]
(李月悦, 彭叶, 陆豪杰, 化学学报, 2021, 79, 705.)
[12]
Zeng Y.; Liu R.-Y.; Li L.; Du S.-N.; Chen G.-S. Acta Polym. Sin. 2022, 53, 1466. (in Chinese)
[12]
(曾雅, 刘荣营, 李龙, 杜思南, 陈国颂, 高分子学报, 2022, 53, 1466.)
[13]
Su L.; Feng Y.; Wei K.; Xu X.; Liu R.; Chen G. Chem. Rev. 2021, 121, 10950.
[14]
Macauley M. S.; Crocker P. R.; Paulson J. C. Nat. Rev. Immunol. 2014, 14, 653.
[15]
Wu L.; Zhang Y.; Li Z.; Yang G.; Kochovski Z.; Chen G.; Jiang M. J. Am. Chem. Soc. 2017, 139, 14684.
[16]
Zhang Y.-F.; Wu L.-B.; Li Z.; Zhang W.-Y.; Luo F.-F.; Chu Y.-W.; Chen G.-S. Biomacromolecules 2018, 19, 2098.
[17]
Esteban-Fernandez de Avila B.; Angsantikul P.; Li J.; Lopez-Ramirez M. A.; Ramirez-Herrera D. E.; Thamphiwatana S.; Chen C.; Delezuk J.; Samakapiruk R.; Ramez V.; Zhang L.; Wang J. Nat. Commun. 2017, 8, 1299.
[18]
Wei X.; Beltran-Gastelum M.; Karshalev E.; de Avila B. E.-F.; Zhou J.; Ran D.; Angsantikul P.; Fang R. H.; Wang J.; Zhang L. Nano Lett. 2019, 19, 1914.
[19]
Khezri B.; Villa K.; Novotny F.; Sofer Z.; Pumera M. Small 2020, 16, 2002111.
[20]
Delezuk J. A. M.; Ramirez-Herrera D. E.; de Avila B. E.-F.; Wang J. Nanoscale 2017, 9, 2195.
[21]
Ostuni R.; Kratochvill F.; Murray P. J.; Natoli G. Trends Immunol. 2015, 36, 229.
[22]
Poltavets A. S.; Vishnyakova P. A.; Elchaninov A. V.; Sukhikh G. T.; Fatkhudinov T. K. Cells 2020, 9, 1535.
[23]
Vinchi F. Hemasphere 2022, 6, e682.
[24]
Zhang L.; Yang J.; Tang D.; Zhang H.; Ding J.; Xiao H. Sci. Sin. Chim. 2022, 52, 2121. (in Chinese)
[24]
(张凌谱, 杨佳臻, 唐东升, 张汉晨, 丁建勋, 肖海华, 中国科学:化学 2022, 52, 2121.)
[25]
Pathria P.; Louis T. L.; Varner J. A. Trends Immunol. 2019, 40, 310.
[26]
Martinez-Pomares L. J. Leukocyte Biol. 2012, 92, 1177.
[27]
Su L.; Zhang W.; Wu X.; Zhang Y.; Chen X.; Liu G.; Chen G.; Jiang M. Small 2015, 11, 4191.
[28]
Cao M.; Dai X.; Chen B.; Zhao N.; Xu F.-J. Acta Chim. Sinica 2020, 78, 1054. (in Chinese)
[28]
(曹萌轩, 代晓光, 陈贝贝, 赵娜娜, 徐福建, 化学学报, 2020, 78, 1054.)
[29]
Wan M. M.; Chen H.; Wang Z.; Liu Z. Y.; Yu Y. Q.; Li L.; Miao Z. Y.; Wang X. W.; Wang Q.; Mao C.; Shen J.; Wei J. Adv. Sci. 2021, 8, 2002525.
[30]
Chen H.; Shi T.; Wang Y.; Liu Z.; Liu F.; Zhang H.; Wang X.; Miao Z.; Liu B.; Wan M.; Mao C.; Wei J. J. Am. Chem. Soc. 2021, 143, 12025.
[31]
Shan F.; Hu J.; Gu C.; Zhou Y.; Zhang Z.; Chen G. Chem. Commun. 2022, 58, 10965.
[32]
Mena-Giraldo P.; Orozco J. ACS Appl. Mat. Interfaces 2022, 14, 5897.
[33]
Lu A. X.; Liu Y.; Oh H.; Gargava A.; Kendall E.; Nie Z.; DeVoe D. L.; Raghavan S. R. ACS Appl. Mat. Interfaces 2016, 8, 15676.
[34]
Du S.-N.; Wang H.-G.; Zhou C.; Wang W.; Zhang Z.-X. J. Am. Chem. Soc. 2020, 142, 2213.
[35]
Liu L.; Liu M.; Su Y.; Dong Y.; Zhou W.; Zhang L.; Zhang H.; Dong B.; Chi L. Nanoscale 2015, 7, 2276.
[36]
Nicholls D.; DeVerse A.; Esplin R. S.; Castaneda J.; Loyd Y.; Nair R.; Voinescu R.; Zhou C.; Wang W.; Gibbs J. G. ACS Appl. Mat. Interfaces 2018, 10, 18050.
[37]
Steinhagen F.; Kinjo T.; Bode C.; Klinman D. M. Vaccine 2011, 29, 3341.
[38]
Yin J.-Z.; Lu Q.-Y.; Yu Z.-N.; Wang J.-J.; Pang H.; Gao F. Cryst. Growth Des. 2010, 10, 40.
[39]
Du S.; Luo Y.; Zuo F.; Li X.; Liu D. Nano 2017, 12, 1750037.
[40]
Masuda M.; Shimizu T. Langmuir 2004, 20, 5969.
[41]
Tao G.; Ji T.; Wang N.; Yang G.; Lei X.; Zheng W.; Liu R.; Xu X.; Yang L.; Yin G.-Q.; Liao X.; Li X.; Ding H.-M.; Ding X.; Xu J.; Yang H.-B.; Chen G. ACS Macro Lett. 2020, 9, 61.
[42]
Zhou C.; Zhang H. P.; Tang J.-Y.; Wang W. Langmuir 2018, 34, 3289.
[43]
Chang X.; Chen C.; Li J.; Lu X.; Liang Y.; Zhou D.; Wang H.; Zhang G.; Li T.; Wang J.; Li L. ACS Appl. Mat. Interfaces 2019, 11, 28507.
[44]
Mammen M.; Choi S.-K.; Whitesides G. M. Angew. Chem. Int. Ed. Engl. 1998, 37, 2754.
[45]
Sun Q.; Sun X.; Ma X.; Zhou Z.; Jin E.; Zhang B.; Shen Y.; Van Kirk E. A.; Murdoch W. J.; Lott J. R.; Lodge T. P.; Radosz M.; Zhao Y. Adv. Mater. 2014, 26, 7615.
文章导航

/