光热材料在海水淡化领域的近期研究进展与展望★
收稿日期: 2023-04-20
网络出版日期: 2023-06-25
基金资助
项目受国家自然科学基金(21908113); 天津市应用基础研究项目(21JCYBJC00140)
Recent Research Progress and Prospect of Photothermal Materials in Seawater Desalination★
Received date: 2023-04-20
Online published: 2023-06-25
Supported by
National Natural Science Foundation of China(21908113); Tianjin Applied Basic Research Project(21JCYBJC00140)
太阳能水蒸发系统成本低、能效高, 对缓解能源危机、减少水污染、促进海水淡化具有重要意义. 然而, 太阳能驱动水蒸发的自然机制往往受到低蒸发率和吸收光谱范围小的影响. 其中, 局部加热并限制热损失的界面水蒸发策略被广泛认可并作为高性能、可持续的太阳能蒸汽产生的有效途径. 随着太阳能水蒸发技术的不断发展, 制备绿色、高效的光热材料已成为研究热点. 根据光热材料的种类将其划分为: 金属材料、半导体材料、碳基材料以及聚合物材料, 详细阐述了不同材料的光热转换机制并总结近年来光热材料在海水淡化领域的研究现状及进展; 讨论了潜在的光热候选材料, 对其未来发展做出了展望. 旨在为海水淡化领域中高效光热材料的合理设计和开发提供可行方案, 对今后光热材料的发展具有总结和指导意义.
杨地 , 史潇凡 , 张冀杰 , 卜显和 . 光热材料在海水淡化领域的近期研究进展与展望★[J]. 化学学报, 2023 , 81(8) : 1052 -1063 . DOI: 10.6023/A23040148
Solar water evaporation system has appealing advantages of low cost and high energy efficiency, which is of great significance to alleviate energy crisis, reduce water pollution and promote seawater desalination. However, the natural mechanism of solar-driven water evaporation system is often affected via low evaporation rate and small absorption spectrum range. The interface evaporation strategy that locally heats and limits heat loss is widely recognized as a high-performance and sustainable approach for efficient solar steam generation. With the continuous development of solar evaporation technology, the preparation of green and efficient photothermal materials has become a research hotspot. In this review, the photothermal materials were classified into metal materials, semiconductor materials, carbon-based materials and polymer materials according to their types. It elaborated on the photothermal conversion mechanisms of different materials and summarized the research status and progress of photothermal materials in the field of seawater desalination in recent years. The potential candidate photothermal materials were discussed and their future development was forecasted. This review aims to propose practical strategies for the rational design and development of efficient photothermal materials in the field of seawater desalination. The findings summarized in this review are of great significance for the future development of photothermal materials and provide valuable guidance for future research in this area.
| [1] | Traver E.; Karaballi R. A.; Monfared Y. E.; Daurie H.; Gagnon G. A.; Dasog M. J. ACS Appl. Nano. Mater. 2020, 3, 2787. |
| [2] | Jiang C.; Feng X.; Wang B. Acta Chim. Sinica 2020, 78, 466. (in Chinese) |
| [2] | ( 蒋成浩, 冯霄, 王博, 化学学报, 2020, 78, 466.) |
| [3] | Drioli E.; Ali A.; Macedonio F. J. Desalination 2015, 356, 56. |
| [4] | Childress A. E.; Elimelech M. J. Membrane Sci. 1996, 119, 253. |
| [5] | Ortiz J. M.; Sotoca J. A.; Expósito E.; Gallud F.; García-García V.; Montiel V.; Aldaz A. J. Membrane Sci. 2005, 252, 65. |
| [6] | Qu K. Y.; Han Q. X. Construction & Design for Engineering 2020, 02, 140. (in Chinese) |
| [6] | ( 曲科宇, 韩庆祥, 工程建设与设计, 2020, 02, 140.) |
| [7] | Chaplin B. P. Environ. Sci.: Processes Impacts 2014, 16, 1182. |
| [8] | Xu J.; Xu F.; Qian M.; Li Z.; Sun P.; Hong Z.; Huang F. Nano Energy 2018, 53, 425. |
| [9] | Liu X.; Tian Y.; Chen F.; Caratenuto A.; DeGiorgis J. A.; ELSonbaty M.; Wan Y.; Ahlgren R.; Zheng Y. Adv. Funct. Mater. 2021, 31, 2100911. |
| [10] | Neumann O.; Feronti C.; Neumann A. D.; Dong A.; Schell K.; Lu B.; Kim E.; Quinn M.; Thompson S.; Grady N. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 11677. |
| [11] | Liu S.; Li S.; Lin M. ACS Energy Lett. 2023, 8, 1680. |
| [12] | (a) Ghasemi H.; Ni G.; Marconnet A. M.; Loomis J.; Yerci S.; Miljkovic N.; Chen G. Nat. Commun. 2014, 5, 4449. |
| [12] | (b) Kashyap V.; Ghasemi H. J. Mater. Chem. A 2020, 8, 7035. |
| [13] | Miao E.-D.; Ye M.-Q.; Guo C.-L.; Liang L.; Liu Q.; Rao Z.-H. Appl. Therm. Eng. 2019, 149, 1255. |
| [14] | (a) Yao J.; Yang G. J. J. Mater. Chem. A 2018, 6, 3869. |
| [14] | (b) Zhu G., Wang L.; Zhang Y.; Yu W.; Xie H. Appl. Phys. A-Mater. 2019, 125, 151. |
| [15] | (a) Liu H.; Chen C.; Chen G.; Kuang Y.; Zhao X., Song J.; Jia C.; Xu X.; Hitz E.; Xie H. Adv. Energy Mater. 2018, 8, 1701616. |
| [15] | (b) Zhu L.; Gao M.; Peh C. K. N.; Wang X.; Ho G. W. Adv. Energy Mater. 2018, 8, 1702149. |
| [16] | Mu P.; Zhang Z.; Bai W.; He J.; Sun H.; Zhu Z.; Liang W.; Li A. Adv. Energy Mater. 2019, 9, 1802158. |
| [17] | Wang Y.; Wu X.; Yang. X.; Owens G.; Xu H. Nano Energy 2020, 78, 105269. |
| [18] | Zhao W.; Gong H.; Song Y.; Li B.; Xu N.; Min X.; Liu G.; Zhu B.; Zhou L.; Zhang, X -X.; Zhu J. Adv. Funct. Mater. 2021, 31, 2100025. |
| [19] | (a) Song C.; Qi D.; Han Y.; Xu Y.; Xu H.; You S.; Wang W.; Wang C.; Wei Y.; Ma J. Environ. Sci. Technol. 2020, 54, 9025. |
| [19] | (b) Ma J.; An L.; Liu D.; Yao J.; Qi D.; Xu H.; Song C.; Cui F.; Chen X.; Ma J.; Wang W. Environ. Sci. Technol. 2022, 56, 9797. |
| [19] | (c) Qi D.; Liu Y.; Liu Y.; Liu Z.; Luo Y.; Xu H.; Zhou X.; Zhang J.; Yang H.; Wang W.; Chen X. Adv. Mater. 2020, 32, 2004401. |
| [20] | Yang H.; Sun Y.; Peng M.; Cai M.; Zhao B.; Li D.; Liang Z.; Jiang L. ACS Nano 2022, 16, 2511. |
| [21] | Xie M.; Zhang P.; Cao Y.; Yan Y.; Wang Z.; Jin C. npj Clean Water 2023, 6, 12. |
| [22] | Zhou X.; Li J.; Liu C.; Wang F.; Chen H.; Zhao C.; Sun H.; Zhu Z. Int. J. Energy Res. 2020, 44, 9213. |
| [23] | Shi L.; Shi Y.; Li R.; Chang J.; Zaouri N.; Ahmed E.; Jin Y.; Zhang C.; Zhuo S.; Wang P. ACS Sustainable Chem. Eng. 2018, 6, 8192. |
| [24] | (a) Zhu L.; Gao M.; Peh C. K. N.; Ho G. W. Mater. Horiz. 2018, 5, 323. |
| [24] | (b) Xiao L.; Chen X.; Yang X.; Sun J.; Geng J. ACS Appl. Polym. Mater. 2020, 2, 4273. |
| [25] | (a) Jain P. K.; Huang X.; El-Sayed I. H.; El-Sayed M. A. Acc. Chem. Res. 2008, 41, 1578. |
| [25] | (b) Liu G.; Xu J.; Wang K. Nano Energy 2017, 41, 269. |
| [26] | Gao M.; Connor P. K. N.; Ho G. W. Energy Environ. Sci. 2016, 9, 3151. |
| [27] | Yi L.; Ci S.; Luo S.; Shao P.; Hou Y.; Wen Z. Nano Energy 2017, 41, 600. |
| [28] | Wang J.; Li Y., Deng L.; Wei N.; Weng Y.; Dong S.; Qi D.; Qiu J.; Chen X.; Wu T. Adv. Mater. 2017, 29, 1603730. |
| [29] | Li W.; Feng W.; Wu S.; Wang W.; Yu D. Sep. Purif. Technol. 2022, 292, 120989. |
| [30] | Vélez-Cordero J. R.; Hernandez-Cordero J. Int. J. Therm. Sci. 2015, 96, 12. |
| [31] | (a) Song X.; Song H.; Xu N.; Yang H.; Zhou L.; Yu L.; Zhu J.; Xu J.; Chen K. J. Mater. Chem. A 2018, 6, 22976. |
| [31] | (b) Yang T.; Lin H.; Lin K.-T.; Jia B. Sustainable Mater. Technol. 2020, 25, e00182. |
| [32] | Kong Y.; Dan H.; Kong W.; Gao Y.; Shang Y.; Ji K.; Yue Q.; Gao B. J. Mater. Chem. A 2020, 8, 24734. |
| [33] | Gao M.; Peh C. K.; Phan H. T.; Zhu L.; Ho G. W. Adv Energy Mater. 2018, 8, 1800711. |
| [34] | (a) Fang J.; Liu J.; Gu J.; Liu Q.; Zhang W.; Su H.; Zhang D. Chem. Mater. 2018, 30, 6217. |
| [34] | (b) Zhang W.; Zhu W.; Shi S.; Hu N.; Suo Y.; Wang J. J. Mater. Chem. A 2018, 6, 16220. |
| [35] | (a) Wang X.; Liu Q.; Wu S.; Xu B.; Xu H. Adv. Mater. 2019, 31, 1807716. |
| [35] | (b) Wang Y.; Wang C.; Song X.; Huang M.; Megarajan S. K.; Shaukat S. F.; Jiang H. J. Mater. Chem. A 2018, 6, 9874. |
| [36] | (a) Liu Y.; Liu Z.; Huang Q.; Liang X.; Zhou X.; Fu H.; Wu Q.; Zhang J.; Xie W. J. Mater. Chem. A 2019, 7, 2581. |
| [36] | (b) Liu Y.; Yu S.; Feng R.; Bernard A.; Liu Y.; Zhang Y.; Duan H.; Shang W.; Tao P.; Song C. Adv. Mater. 2015, 27, 2768. |
| [37] | (a) Ren H.; Tang M.; Guan B.; Wang K.; Yang J.; Wang F.; Wang M.; Shan J.; Chen Z.; Wei D. Adv. Mater. 2017, 29, 1702590. |
| [37] | (b) Sajadi S. M.; Farokhnia N.; Irajizad P.; Hasnain M.; Ghasemi H. J. Mater. Chem. A 2016, 4, 4700. |
| [38] | (a) Shi L.; Shi Y.; Zhuo S.; Zhang C.; Aldrees Y.; Aleid S.; Wang P. Nano Energy 2019, 60, 222. |
| [38] | (b) Yi L.; Qi D.; Shao P.; Lei C.; Hou Y.; Cai P.; Wang G.; Chen X.; Wen Z. Nanoscale 2019, 11, 9958. |
| [39] | Li Z.; Wang C.; Su J.; Ling S.; Wang W.; An M. Sol. RRL 2019, 3, 1800206. |
| [40] | Wang W.; Wen H.; Shi J.; Su J.; Li Z.; Wang C.; Yan X. Sol. RRL 2019, 3, 1900180. |
| [41] | Jeon J.; Park S.; Lee B. Sol. Energy 2016, 132, 247. |
| [42] | Chen M.; He Y.; Zhu J.; Kim D. Energy Convers. Manage. 2016, 112, 21. |
| [43] | Zhou J.; Gu Y.; Deng Z.; Miao L.; Su H.; Wang P.; Shi J. Sustainable Mater. Technol. 2019, 19, e00090. |
| [44] | Choi W.; Park J. Y.; Kim Y. J. Ind. Eng. Chem. 2021, 95, 120. |
| [45] | Fu Y.; Mei T.; Wang G.; Guo A.; Dai G.; Wang S.; Wang J.; Li J.; Wang X. Appl. Therm. Eng. 2017, 114, 961. |
| [46] | Zheng Z.; Li H.; Zhang X.; Jiang H.; Geng X.; Li S.; Tu H.; Cheng X.; Yang P.; Wan Y. Nano Energy 2020, 68, 104298. |
| [47] | Wang Z.; Liu Y.; Tao P.; Shen Q.; Yi N.; Zhang F.; Liu Q.; Song C.; Zhang D.; Shang W. Small 2014, 10, 3234. |
| [48] | Guo A.; Fu Y.; Wang G.; Wang X. RSC Adv. 2017, 7, 4815. |
| [49] | Wang X.; He Y.; Liu X.; Cheng G.; Zhu J. Q. Appl. Energy 2017, 195, 414. |
| [50] | (a) Beyene H. D.; Werkneh A. A.; Bezabh H. K.; Ambaye T. G. Sustainable Mater. Technol. 2017, 13, 18. |
| [50] | (b) Iyahraja S.; Rajadurai J. S. AIP Adv. 2015, 5, 057103. |
| [51] | Cao H.; Cui T.; Wang W.; Li S.; Tang X.; Wang H.; Zhu G. Mater. Res. Express 2020, 7, 045005. |
| [52] | Gao M.; Peh C. K.; Phan H. T.; Zhu L.; Ho G. W., Adv. Energy Mater. 2018, 8, 1800711. |
| [53] | Gao Y.; Wu J.; Wang J.; Fan Y.; Zhang S.; Dai W. ACS Appl. Mater. Interfaces 2020, 12, 11036. |
| [54] | Su L.; Hu Y.; Ma Z.; Miao L.; Zhou J.; Ning Y.; Chang Z.; Wu B.; Cao M.; Xia R. Sol. Energy Mater. Sol. Cells 2020, 210, 110484. |
| [55] | Sheikh M.; Pazirofteh M.; Dehghani M.; Asghari M.; Rezakazemi M.; Valderrama C.; Cortina J.-L. Chem. Eng. J. 2020, 391, 123475. |
| [56] | Ye M.; Wang X.; Zhou P.; Chen R.; Gan Q.; Zhang T. Water Supply 2020, 20, 478. |
| [57] | (a) Nandi D. K.; Sen U. K.; Choudhury D.; Mitra S.; Sarkar S. K. ACS Appl. Mater. Interfaces 2014, 6, 6606. |
| [57] | (b) Zhu Y.; Chen G.; Xu X.; Yang G.; Liu M.; Shao Z. ACS Catal. 2017, 7, 3540. |
| [58] | Zhu L.; Sun L.; Zhang H.; Yu D.; Aslan H.; Zhao J.; Li Z.; Yu M.; Besenbacher F.; Sun Y. Nano Energy 2019, 57, 842. |
| [59] | Bai H.; Hu J.; Lam S. H.; Guo Y.; Zhu X.-M.; Yang Z.; Wang J. ACS Mater. Lett. 2022, 4, 1584. |
| [60] | Jiang H.; Ai L.; Chen M.; Jiang J. ACS Sustainable Chem. Eng. 2020, 8, 10833. |
| [61] | Wang P.; Gu Y.; Miao L.; Zhou J.; Su H.; Wei A.; Mu X.; Tian Y.; Shi J.; Cai H. Sustainable Mater. Technol. 2019, 20, e00106. |
| [62] | Xue C.; Huang R.; Xue R.; Chang Q.; Li N.; Zhang J.; Hu S.; Yang J. J. Alloys Compd. 2022, 909, 164843. |
| [63] | Song X.; Wang P.; Huang Y.; Zhu X.; Chio U.-F.; Wang F.; Wang G.; Wang W.; Liu B. Nano Res. 2023, DOI: 10.1007/s12274-023-5546-9. |
| [64] | Wang S.; Almenabawy S. M.; Kherani N. P.; Leung S. N.; O’Brien P. G. ACS Appl. Energy Mater. 2020, 3, 3378. |
| [65] | (a) Hu X.; Xu W.; Zhou L.; Tan Y.; Wang Y.; Zhu S.; Zhu J. Adv. Mater. 2017, 29, 1604031. |
| [65] | (b) Jiang Q.; Tian L.; Liu K. K.; Tadepalli S.; Raliya R.; Biswas P.; Naik R. R.; Singamaneni S. Adv. Mater. 2016, 28, 9400. |
| [66] | (a) Kou H.; Liu Z.; Zhu B.; Macharia D. K.; Ahmed S.; Wu B.; Zhu M.; Liu X.; Chen Z. Desalination 2019, 462, 29. |
| [66] | (b) Wang Y.; Zhang L.; Wang P. ACS Sustainable Chem. Eng. 2016, 4, 1223. |
| [67] | (a) Liu C.; Cai C.; Ma F.; Zhao X.; Ahmad H. J. Colloid Interface Sci. 2020, 560, 103. |
| [67] | (b) Zhang Q.; Xiao X.; Wang G.; Ming X.; Liu X.; Wang H.; Yang H.; Xu W.; Wang X. J. Mater. Chem. A 2018, 6, 17212. |
| [68] | Xue G.; Liu K.; Chen Q.; Yang P.; Li J.; Ding T.; Duan J.; Qi B.; Zhou J. ACS Appl. Mater. Interfaces 2017, 9, 15052. |
| [69] | Xu N.; Hu X.; Xu W.; Li X.; Zhou L.; Zhu S.; Zhu J. Adv. Mater. 2017, 29, 1606762. |
| [70] | Shi L.; Wang Y.; Zhang L.; Wang P. J. Mater. Chem. A 2017, 5, 16212. |
| [71] | (a) Behabtu N.; Young C. C.; Tsentalovich D. E.; Kleinerman O.; Wang X.; Ma A. W.; Bengio E. A.; Waarbeek R. F.; de Jong J. J.; Hoogerwerf R. E. Science 2013, 339, 182. |
| [71] | (b) Hone J.; Llaguno M.; Nemes N.; Johnson A.; Fischer J.; Walters D., Casavant M.; Schmidt J.; Smalley R. Appl. Phys. Lett. 2000, 77, 666. |
| [72] | Ghafurian M. M.; Niazmand H.; Dastjerd F. T.; Mahian O. Chem. Eng. Sci. 2019, 207, 79. |
| [73] | Guo C.-L.; Miao E.-D.; Zhao J.-X.; Liang L.; Liu Q. Sol. Energy 2019, 188, 1283. |
| [74] | Chen C.; Li Y.; Song J.; Yang Z.; Kuang Y.; Hitz E.; Jia C.; Gong A.; Jiang F.; Zhu J. Y.; Yang B.; Xie J.; Hu L. Adv. Mater. 2017, 29, 1701756. |
| [75] | Song J.; Li J.; Bai X.; Kang L.; Ma L.; Zhao N.; Wu S.; Xue Y.; Li J.; Ji X. J. Mater. Sci. Technol. 2021, 87, 83. |
| [76] | Deng Z.; Miao L.; Liu P.-F.; Zhou J.; Wang P.; Gu Y.; Wang X.; Cai H.; Sun L., Tanemura S. Nano Energy 2019, 55, 368. |
| [77] | Ito Y.; Tanabe Y.; Han J.; Fujita T.; Tanigaki K.; Chen M. Adv. Mater. 2015, 27, 4302. |
| [78] | Kim K.; Yu S.; An C.; Kim S.-W.; Jang J.-H. ACS Appl. Mater. Inter. 2018, 10, 15602. |
| [79] | Song C.; Irshad M. S.; Jin Y.; Hu J.; Liu W. Desalination 2022, 544, 116125. |
| [80] | Luo Q.; Yang Y.; Wang K.; Yu J.; Wang R.; Ji D.; Qin X. Sci. China Mater. 2023, DOI: 10.1007/s40843-023-2431-3. |
| [81] | Li L.; Liu Y.; Hao P.; Wang Z.; Fu L.; Ma Z.; Zhou J. Biomaterials 2015, 41, 132. |
| [82] | Xiao L.; Sun J.; Liu L.; Hu R.; Lu H.; Cheng C.; Huang Y.; Wang S.; Geng J. ACS Appl. Mater. Interfaces 2017, 9, 5382. |
| [83] | (a) Huang X.; Yu Y.-H.; de Llergo O. L.; Marquez S. M.; Cheng Z. RSC Adv. 2017, 7, 9495. |
| [83] | (b) Yang K.; Xu H.; Cheng L.; Sun C.; Wang J.; Liu Z. Adv. Mater. 2012, 24, 5586. |
| [84] | Wang Z.; Yan Y.; Shen X.; Jin C.; Sun Q.; Li H. J. Mater. Chem. A 2019, 7, 20706. |
| [85] | Mu P.; Bai W.; Fan Y.; Zhang Z.; Sun H.; Zhu Z.; Liang W.; Li A. J. Mater. Chem. A 2019, 7, 9673. |
| [86] | Zhou X.; Zhao F.; Guo Y.; Rosenberger B.; Yu G. Sci. Adv. 2019, 5, eaaw5484. |
| [87] | He J.; Foysal T. R.; Yang H.; Islam M.; Li L.; Li W.; Cui W. Mater. Lett. 2020, 261, 126962. |
| [88] | Zheng Z.; Liu H.; Wu D.; Wang X. Chem. Eng. J. 2022, 440, 135862. |
| [89] | Xu Y.; Tang C.; Ma J.; Liu D.; Qi D.; You S.; Cui F.; Wei Y.; Wang W. Environ. Sci. Technol. 2020, 54, 5150. |
| [90] | Zhang J.; Luo X.; Zhang X.; Xu Y.; Xu H.; Zuo J.; Liu D.; Cui F.; Wang W. Chin. Chem. Lett. 2021, 32, 1442. |
| [91] | Wu Y.; Shen L.; Zhang C.; Gao H.; Chen J.; Jin L.; Lin P.; Zhang H.; Xia Y. Desalination 2021, 505, 114766. |
| [92] | Lu X.; Yuan P.; Zhang W.; Wu Q.; Wang X.; Zhao M.; Sun P.; Huang W.; Fan Q. Polym. Chem. 2018, 9, 3118. |
| [93] | Shao B.; Wang Y.; Wu X.; Lu Y.; Yang X.; Chen G. Y.; Owens G.; Xu H. J. Mater. Chem. A 2020, 8, 11665. |
| [94] | Chen P.; Ma Y.; Zheng Z.; Wu C.; Wang Y.; Liang G. Nat. Commun. 2019, 10, 1192. |
| [95] | Li H. C.; Li H. N.; Zou L. Y.; Li Q.; Chen P. F.; Quan X. N.; Deng K.; Sheng C. Q.; Ji J.; Fan. Q.; Xu Z. K.; Wan J. H. J. Mater. Chem. A 2023, 11, 2933. |
| [96] | Ma S.; Qarony W.; Hossain M. I.; Yip C. T.; Tsang Y. H. Sol. Energy Mater. Sol. Cells 2019, 196, 36. |
| [97] | (a) Elimelech M.; Phillip W. A. Science 2011, 333, 712. |
| [97] | (b) Gao M.; Zhu L.; Peh C. K.; Ho G. W. Energy Environ. Sci. 2019, 12, 841. |
| [98] | (a) Shi Y.; Yang J.; Gao F.; Zhang Q. ACS Nano 2023, 17, 1879. |
| [98] | (b) Kong L.; Liu M.; Huang H.; Xu Y.; Bu X. H. Adv. Energy Mater. 2022, 12, 2100172. |
| [98] | (c) Li L. L.; Liu S.; Zhang Q.; Hu N. T.; Wei L. M.; Yang Z.; Wei H. Acta Phys.-Chim. Sin. 2017, 33, 1960. (in Chinese) |
| [98] | ( 李路路, 刘帅, 章琴, 胡南滔, 魏良明, 杨志, 魏浩, 物理化学学报, 2017, 33, 1960.) |
| [98] | (d) Zhou B.; Chen L. Acta Chim. Sinica 2015, 73, 487. (in Chinese) |
| [98] | ( 周宝龙, 陈龙, 化学学报, 2015, 73, 487.) |
| [99] | Cui W.-R.; Zhang C.-R.; Liang R.-P.; Liu J.; Qiu J.-D. ACS Appl. Mater. Inter. 2021, 13, 31561. |
| [100] | Xia Z. J.; Yang H. C.; Chen Z.; Waldman R. Z.; Zhao Y.; Zhang C.; Patel S. N.; Darling S. B. Adv. Mater. Interfaces 2019, 6, 1900254. |
| [101] | Jia S.; Hao L.; Liu Y.; Lin E.; Liu W.; Yang Y.; Tian Y.; Peng Y.; Cheng P.; Chen Y.; Zhang Z. ACS Mater. Lett. 2023, 5, 458. |
| [102] | Fang Z.; Bueken B.; De Vos D. E.; Fischer R. A. Angew. Chem., Int. Ed. 2015, 54, 7234. |
| [103] | Chen Z.; Su Y.; Tang X.; Zhang X.; Duan C.; Huang F.; Li Y. Sol. RRL 2021, 5, 2100762. |
| [104] | (a) Wang H.; Zhao J.; Li Y.; Cao Y.; Zhu Z.; Wang M.; Zhang R.; Pan F.; Jiang Z. Nano-Micro Lett. 2022, 14, 216. |
| [104] | (b) Wang M.; Wang Y.; Zhao J.; Zou J.; Liang X.; Zhu Z.; Zhu J.; Wang H.; Wang Y.; Pan F.; Jang Z. Angew. Chem., Int. Ed. 2023, 62, e202219084. |
| [104] | (c) Zhou W.; Wei M.; Zhang X.; Xu F.; Wang Y. ACS Appl. Mater. Inter. 2019, 11, 16847. |
| [105] | (a) Sumida K.; Rogow D. L.; Mason J. A.; McDonald T. M.; Bloch E. D.; Herm Z. R.; Bae T.-H.; Long J. R. Chem. Rev. 2012, 112, 724. |
| [105] | (b) Wang C.; Kim J.; Tang J.; Kim M.; Lim H.; Malgras V.; You J.; Xu Q.; Li J.; Yamauchi Y. Chem 2020, 6, 19. |
| [105] | (c) Zhong M.; Kong L.; Zhao K.; Zhang Y. H.; Li N.; Bu X. H. Adv. Sci. 2021, 8, 2001980. |
| [106] | Chen G.; Jiang Z.; Li A.; Chen X.; Ma Z.; Song H. J. Mater. Chem. A 2021, 9, 16805. |
| [107] | Ma Q.; Yin P.; Zhao M.; Luo Z.; Huang Y.; He Q.; Yu Y.; Liu Z.; Hu Z.; Chen B. Adv. Mater. 2019, 31, 1808249. |
| [108] | Wang J.; Wang W.; Li J.; Mu X.; Yan X; Wang Z.; Su J.; Lei T.; Wang C. ACS Appl. Mater. Inter. 2021, 13, 45944. |
| [109] | Zhou S.; Kong X.; Str?mme M.; Xu C. ACS Mater. Lett. 2022, 4, 1058. |
| [110] | Yao Z. Q.; Wang K.; Liu R.; Yuan Y. J.; Pang J. J.; Li Q. W.; Shao T. Y.; Li Z. G.; Feng R.; Zou B.; Li W.; Xu J.; Bu X. H. Angew. Chem., Int. Ed. 2022, 61, e202202073. |
/
| 〈 |
|
〉 |