综述

光热材料在海水淡化领域的近期研究进展与展望

  • 杨地 ,
  • 史潇凡 ,
  • 张冀杰 ,
  • 卜显和
展开
  • a 南开大学材料科学与工程学院 金属与分子基材料化学天津市重点实验室 天津 300350
    b 武汉大学化学与分子科学学院 生物医学高分子材料教育部重点实验室 武汉 430072
    c 南开大学化学学院 元素有机化学国家重点实验室 天津 300071

杨地, 1998年出生于河南镇平, 2017年毕业于桂林理工大学, 获学士学位. 目前在卜显和教授指导下攻读硕士学位. 研究兴趣为光催化水分解产氢.

史潇凡, 1997年出生于安徽合肥, 2019年毕业于南京航空航天大学, 获学士学位. 2022年毕业于南开大学, 获材料工程硕士学位, 导师为卜显和教授. 现于武汉大学攻读无机化学博士学位, 导师为邓鹤翔教授. 研究方向为MOF基光催化剂的合成与性能研究.

张冀杰, 2012年和2018年在天津大学获得学士和博士学位. 2018年至今在南开大学材料科学与工程学院卜显和院士课题组从事博士后研究. 主要研究领域涉及功能金属有机框架材料的设计构筑和太阳能催化转化反应过程中的机理研究.

卜显和, 教授、博导、国家杰青、长江学者、天津市首批杰出人才、全国政协委员、英国皇家化学会会士、南开大学材料科学与工程学院院长、中国科学院院士. 在配位聚合物的功能导向构筑、结构调控及性能研究等方面取得了系统成果.

庆祝《化学学报》创刊90周年.

收稿日期: 2023-04-20

  网络出版日期: 2023-06-25

基金资助

项目受国家自然科学基金(21908113); 天津市应用基础研究项目(21JCYBJC00140)

Recent Research Progress and Prospect of Photothermal Materials in Seawater Desalination

  • Di Yang ,
  • Xiaofan Shi ,
  • Jijie Zhang ,
  • Xian-He Bu
Expand
  • a Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350
    b Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072
    c State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-20

  Online published: 2023-06-25

Supported by

National Natural Science Foundation of China(21908113); Tianjin Applied Basic Research Project(21JCYBJC00140)

摘要

太阳能水蒸发系统成本低、能效高, 对缓解能源危机、减少水污染、促进海水淡化具有重要意义. 然而, 太阳能驱动水蒸发的自然机制往往受到低蒸发率和吸收光谱范围小的影响. 其中, 局部加热并限制热损失的界面水蒸发策略被广泛认可并作为高性能、可持续的太阳能蒸汽产生的有效途径. 随着太阳能水蒸发技术的不断发展, 制备绿色、高效的光热材料已成为研究热点. 根据光热材料的种类将其划分为: 金属材料、半导体材料、碳基材料以及聚合物材料, 详细阐述了不同材料的光热转换机制并总结近年来光热材料在海水淡化领域的研究现状及进展; 讨论了潜在的光热候选材料, 对其未来发展做出了展望. 旨在为海水淡化领域中高效光热材料的合理设计和开发提供可行方案, 对今后光热材料的发展具有总结和指导意义.

本文引用格式

杨地 , 史潇凡 , 张冀杰 , 卜显和 . 光热材料在海水淡化领域的近期研究进展与展望[J]. 化学学报, 2023 , 81(8) : 1052 -1063 . DOI: 10.6023/A23040148

Abstract

Solar water evaporation system has appealing advantages of low cost and high energy efficiency, which is of great significance to alleviate energy crisis, reduce water pollution and promote seawater desalination. However, the natural mechanism of solar-driven water evaporation system is often affected via low evaporation rate and small absorption spectrum range. The interface evaporation strategy that locally heats and limits heat loss is widely recognized as a high-performance and sustainable approach for efficient solar steam generation. With the continuous development of solar evaporation technology, the preparation of green and efficient photothermal materials has become a research hotspot. In this review, the photothermal materials were classified into metal materials, semiconductor materials, carbon-based materials and polymer materials according to their types. It elaborated on the photothermal conversion mechanisms of different materials and summarized the research status and progress of photothermal materials in the field of seawater desalination in recent years. The potential candidate photothermal materials were discussed and their future development was forecasted. This review aims to propose practical strategies for the rational design and development of efficient photothermal materials in the field of seawater desalination. The findings summarized in this review are of great significance for the future development of photothermal materials and provide valuable guidance for future research in this area.

参考文献

[1]
Traver E.; Karaballi R. A.; Monfared Y. E.; Daurie H.; Gagnon G. A.; Dasog M. J. ACS Appl. Nano. Mater. 2020, 3, 2787.
[2]
Jiang C.; Feng X.; Wang B. Acta Chim. Sinica 2020, 78, 466. (in Chinese)
[2]
( 蒋成浩, 冯霄, 王博, 化学学报, 2020, 78, 466.)
[3]
Drioli E.; Ali A.; Macedonio F. J. Desalination 2015, 356, 56.
[4]
Childress A. E.; Elimelech M. J. Membrane Sci. 1996, 119, 253.
[5]
Ortiz J. M.; Sotoca J. A.; Expósito E.; Gallud F.; García-García V.; Montiel V.; Aldaz A. J. Membrane Sci. 2005, 252, 65.
[6]
Qu K. Y.; Han Q. X. Construction & Design for Engineering 2020, 02, 140. (in Chinese)
[6]
( 曲科宇, 韩庆祥, 工程建设与设计, 2020, 02, 140.)
[7]
Chaplin B. P. Environ. Sci.: Processes Impacts 2014, 16, 1182.
[8]
Xu J.; Xu F.; Qian M.; Li Z.; Sun P.; Hong Z.; Huang F. Nano Energy 2018, 53, 425.
[9]
Liu X.; Tian Y.; Chen F.; Caratenuto A.; DeGiorgis J. A.; ELSonbaty M.; Wan Y.; Ahlgren R.; Zheng Y. Adv. Funct. Mater. 2021, 31, 2100911.
[10]
Neumann O.; Feronti C.; Neumann A. D.; Dong A.; Schell K.; Lu B.; Kim E.; Quinn M.; Thompson S.; Grady N. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 11677.
[11]
Liu S.; Li S.; Lin M. ACS Energy Lett. 2023, 8, 1680.
[12]
(a) Ghasemi H.; Ni G.; Marconnet A. M.; Loomis J.; Yerci S.; Miljkovic N.; Chen G. Nat. Commun. 2014, 5, 4449.
[12]
(b) Kashyap V.; Ghasemi H. J. Mater. Chem. A 2020, 8, 7035.
[13]
Miao E.-D.; Ye M.-Q.; Guo C.-L.; Liang L.; Liu Q.; Rao Z.-H. Appl. Therm. Eng. 2019, 149, 1255.
[14]
(a) Yao J.; Yang G. J. J. Mater. Chem. A 2018, 6, 3869.
[14]
(b) Zhu G., Wang L.; Zhang Y.; Yu W.; Xie H. Appl. Phys. A-Mater. 2019, 125, 151.
[15]
(a) Liu H.; Chen C.; Chen G.; Kuang Y.; Zhao X., Song J.; Jia C.; Xu X.; Hitz E.; Xie H. Adv. Energy Mater. 2018, 8, 1701616.
[15]
(b) Zhu L.; Gao M.; Peh C. K. N.; Wang X.; Ho G. W. Adv. Energy Mater. 2018, 8, 1702149.
[16]
Mu P.; Zhang Z.; Bai W.; He J.; Sun H.; Zhu Z.; Liang W.; Li A. Adv. Energy Mater. 2019, 9, 1802158.
[17]
Wang Y.; Wu X.; Yang. X.; Owens G.; Xu H. Nano Energy 2020, 78, 105269.
[18]
Zhao W.; Gong H.; Song Y.; Li B.; Xu N.; Min X.; Liu G.; Zhu B.; Zhou L.; Zhang, X -X.; Zhu J. Adv. Funct. Mater. 2021, 31, 2100025.
[19]
(a) Song C.; Qi D.; Han Y.; Xu Y.; Xu H.; You S.; Wang W.; Wang C.; Wei Y.; Ma J. Environ. Sci. Technol. 2020, 54, 9025.
[19]
(b) Ma J.; An L.; Liu D.; Yao J.; Qi D.; Xu H.; Song C.; Cui F.; Chen X.; Ma J.; Wang W. Environ. Sci. Technol. 2022, 56, 9797.
[19]
(c) Qi D.; Liu Y.; Liu Y.; Liu Z.; Luo Y.; Xu H.; Zhou X.; Zhang J.; Yang H.; Wang W.; Chen X. Adv. Mater. 2020, 32, 2004401.
[20]
Yang H.; Sun Y.; Peng M.; Cai M.; Zhao B.; Li D.; Liang Z.; Jiang L. ACS Nano 2022, 16, 2511.
[21]
Xie M.; Zhang P.; Cao Y.; Yan Y.; Wang Z.; Jin C. npj Clean Water 2023, 6, 12.
[22]
Zhou X.; Li J.; Liu C.; Wang F.; Chen H.; Zhao C.; Sun H.; Zhu Z. Int. J. Energy Res. 2020, 44, 9213.
[23]
Shi L.; Shi Y.; Li R.; Chang J.; Zaouri N.; Ahmed E.; Jin Y.; Zhang C.; Zhuo S.; Wang P. ACS Sustainable Chem. Eng. 2018, 6, 8192.
[24]
(a) Zhu L.; Gao M.; Peh C. K. N.; Ho G. W. Mater. Horiz. 2018, 5, 323.
[24]
(b) Xiao L.; Chen X.; Yang X.; Sun J.; Geng J. ACS Appl. Polym. Mater. 2020, 2, 4273.
[25]
(a) Jain P. K.; Huang X.; El-Sayed I. H.; El-Sayed M. A. Acc. Chem. Res. 2008, 41, 1578.
[25]
(b) Liu G.; Xu J.; Wang K. Nano Energy 2017, 41, 269.
[26]
Gao M.; Connor P. K. N.; Ho G. W. Energy Environ. Sci. 2016, 9, 3151.
[27]
Yi L.; Ci S.; Luo S.; Shao P.; Hou Y.; Wen Z. Nano Energy 2017, 41, 600.
[28]
Wang J.; Li Y., Deng L.; Wei N.; Weng Y.; Dong S.; Qi D.; Qiu J.; Chen X.; Wu T. Adv. Mater. 2017, 29, 1603730.
[29]
Li W.; Feng W.; Wu S.; Wang W.; Yu D. Sep. Purif. Technol. 2022, 292, 120989.
[30]
Vélez-Cordero J. R.; Hernandez-Cordero J. Int. J. Therm. Sci. 2015, 96, 12.
[31]
(a) Song X.; Song H.; Xu N.; Yang H.; Zhou L.; Yu L.; Zhu J.; Xu J.; Chen K. J. Mater. Chem. A 2018, 6, 22976.
[31]
(b) Yang T.; Lin H.; Lin K.-T.; Jia B. Sustainable Mater. Technol. 2020, 25, e00182.
[32]
Kong Y.; Dan H.; Kong W.; Gao Y.; Shang Y.; Ji K.; Yue Q.; Gao B. J. Mater. Chem. A 2020, 8, 24734.
[33]
Gao M.; Peh C. K.; Phan H. T.; Zhu L.; Ho G. W. Adv Energy Mater. 2018, 8, 1800711.
[34]
(a) Fang J.; Liu J.; Gu J.; Liu Q.; Zhang W.; Su H.; Zhang D. Chem. Mater. 2018, 30, 6217.
[34]
(b) Zhang W.; Zhu W.; Shi S.; Hu N.; Suo Y.; Wang J. J. Mater. Chem. A 2018, 6, 16220.
[35]
(a) Wang X.; Liu Q.; Wu S.; Xu B.; Xu H. Adv. Mater. 2019, 31, 1807716.
[35]
(b) Wang Y.; Wang C.; Song X.; Huang M.; Megarajan S. K.; Shaukat S. F.; Jiang H. J. Mater. Chem. A 2018, 6, 9874.
[36]
(a) Liu Y.; Liu Z.; Huang Q.; Liang X.; Zhou X.; Fu H.; Wu Q.; Zhang J.; Xie W. J. Mater. Chem. A 2019, 7, 2581.
[36]
(b) Liu Y.; Yu S.; Feng R.; Bernard A.; Liu Y.; Zhang Y.; Duan H.; Shang W.; Tao P.; Song C. Adv. Mater. 2015, 27, 2768.
[37]
(a) Ren H.; Tang M.; Guan B.; Wang K.; Yang J.; Wang F.; Wang M.; Shan J.; Chen Z.; Wei D. Adv. Mater. 2017, 29, 1702590.
[37]
(b) Sajadi S. M.; Farokhnia N.; Irajizad P.; Hasnain M.; Ghasemi H. J. Mater. Chem. A 2016, 4, 4700.
[38]
(a) Shi L.; Shi Y.; Zhuo S.; Zhang C.; Aldrees Y.; Aleid S.; Wang P. Nano Energy 2019, 60, 222.
[38]
(b) Yi L.; Qi D.; Shao P.; Lei C.; Hou Y.; Cai P.; Wang G.; Chen X.; Wen Z. Nanoscale 2019, 11, 9958.
[39]
Li Z.; Wang C.; Su J.; Ling S.; Wang W.; An M. Sol. RRL 2019, 3, 1800206.
[40]
Wang W.; Wen H.; Shi J.; Su J.; Li Z.; Wang C.; Yan X. Sol. RRL 2019, 3, 1900180.
[41]
Jeon J.; Park S.; Lee B. Sol. Energy 2016, 132, 247.
[42]
Chen M.; He Y.; Zhu J.; Kim D. Energy Convers. Manage. 2016, 112, 21.
[43]
Zhou J.; Gu Y.; Deng Z.; Miao L.; Su H.; Wang P.; Shi J. Sustainable Mater. Technol. 2019, 19, e00090.
[44]
Choi W.; Park J. Y.; Kim Y. J. Ind. Eng. Chem. 2021, 95, 120.
[45]
Fu Y.; Mei T.; Wang G.; Guo A.; Dai G.; Wang S.; Wang J.; Li J.; Wang X. Appl. Therm. Eng. 2017, 114, 961.
[46]
Zheng Z.; Li H.; Zhang X.; Jiang H.; Geng X.; Li S.; Tu H.; Cheng X.; Yang P.; Wan Y. Nano Energy 2020, 68, 104298.
[47]
Wang Z.; Liu Y.; Tao P.; Shen Q.; Yi N.; Zhang F.; Liu Q.; Song C.; Zhang D.; Shang W. Small 2014, 10, 3234.
[48]
Guo A.; Fu Y.; Wang G.; Wang X. RSC Adv. 2017, 7, 4815.
[49]
Wang X.; He Y.; Liu X.; Cheng G.; Zhu J. Q. Appl. Energy 2017, 195, 414.
[50]
(a) Beyene H. D.; Werkneh A. A.; Bezabh H. K.; Ambaye T. G. Sustainable Mater. Technol. 2017, 13, 18.
[50]
(b) Iyahraja S.; Rajadurai J. S. AIP Adv. 2015, 5, 057103.
[51]
Cao H.; Cui T.; Wang W.; Li S.; Tang X.; Wang H.; Zhu G. Mater. Res. Express 2020, 7, 045005.
[52]
Gao M.; Peh C. K.; Phan H. T.; Zhu L.; Ho G. W., Adv. Energy Mater. 2018, 8, 1800711.
[53]
Gao Y.; Wu J.; Wang J.; Fan Y.; Zhang S.; Dai W. ACS Appl. Mater. Interfaces 2020, 12, 11036.
[54]
Su L.; Hu Y.; Ma Z.; Miao L.; Zhou J.; Ning Y.; Chang Z.; Wu B.; Cao M.; Xia R. Sol. Energy Mater. Sol. Cells 2020, 210, 110484.
[55]
Sheikh M.; Pazirofteh M.; Dehghani M.; Asghari M.; Rezakazemi M.; Valderrama C.; Cortina J.-L. Chem. Eng. J. 2020, 391, 123475.
[56]
Ye M.; Wang X.; Zhou P.; Chen R.; Gan Q.; Zhang T. Water Supply 2020, 20, 478.
[57]
(a) Nandi D. K.; Sen U. K.; Choudhury D.; Mitra S.; Sarkar S. K. ACS Appl. Mater. Interfaces 2014, 6, 6606.
[57]
(b) Zhu Y.; Chen G.; Xu X.; Yang G.; Liu M.; Shao Z. ACS Catal. 2017, 7, 3540.
[58]
Zhu L.; Sun L.; Zhang H.; Yu D.; Aslan H.; Zhao J.; Li Z.; Yu M.; Besenbacher F.; Sun Y. Nano Energy 2019, 57, 842.
[59]
Bai H.; Hu J.; Lam S. H.; Guo Y.; Zhu X.-M.; Yang Z.; Wang J. ACS Mater. Lett. 2022, 4, 1584.
[60]
Jiang H.; Ai L.; Chen M.; Jiang J. ACS Sustainable Chem. Eng. 2020, 8, 10833.
[61]
Wang P.; Gu Y.; Miao L.; Zhou J.; Su H.; Wei A.; Mu X.; Tian Y.; Shi J.; Cai H. Sustainable Mater. Technol. 2019, 20, e00106.
[62]
Xue C.; Huang R.; Xue R.; Chang Q.; Li N.; Zhang J.; Hu S.; Yang J. J. Alloys Compd. 2022, 909, 164843.
[63]
Song X.; Wang P.; Huang Y.; Zhu X.; Chio U.-F.; Wang F.; Wang G.; Wang W.; Liu B. Nano Res. 2023, DOI: 10.1007/s12274-023-5546-9.
[64]
Wang S.; Almenabawy S. M.; Kherani N. P.; Leung S. N.; O’Brien P. G. ACS Appl. Energy Mater. 2020, 3, 3378.
[65]
(a) Hu X.; Xu W.; Zhou L.; Tan Y.; Wang Y.; Zhu S.; Zhu J. Adv. Mater. 2017, 29, 1604031.
[65]
(b) Jiang Q.; Tian L.; Liu K. K.; Tadepalli S.; Raliya R.; Biswas P.; Naik R. R.; Singamaneni S. Adv. Mater. 2016, 28, 9400.
[66]
(a) Kou H.; Liu Z.; Zhu B.; Macharia D. K.; Ahmed S.; Wu B.; Zhu M.; Liu X.; Chen Z. Desalination 2019, 462, 29.
[66]
(b) Wang Y.; Zhang L.; Wang P. ACS Sustainable Chem. Eng. 2016, 4, 1223.
[67]
(a) Liu C.; Cai C.; Ma F.; Zhao X.; Ahmad H. J. Colloid Interface Sci. 2020, 560, 103.
[67]
(b) Zhang Q.; Xiao X.; Wang G.; Ming X.; Liu X.; Wang H.; Yang H.; Xu W.; Wang X. J. Mater. Chem. A 2018, 6, 17212.
[68]
Xue G.; Liu K.; Chen Q.; Yang P.; Li J.; Ding T.; Duan J.; Qi B.; Zhou J. ACS Appl. Mater. Interfaces 2017, 9, 15052.
[69]
Xu N.; Hu X.; Xu W.; Li X.; Zhou L.; Zhu S.; Zhu J. Adv. Mater. 2017, 29, 1606762.
[70]
Shi L.; Wang Y.; Zhang L.; Wang P. J. Mater. Chem. A 2017, 5, 16212.
[71]
(a) Behabtu N.; Young C. C.; Tsentalovich D. E.; Kleinerman O.; Wang X.; Ma A. W.; Bengio E. A.; Waarbeek R. F.; de Jong J. J.; Hoogerwerf R. E. Science 2013, 339, 182.
[71]
(b) Hone J.; Llaguno M.; Nemes N.; Johnson A.; Fischer J.; Walters D., Casavant M.; Schmidt J.; Smalley R. Appl. Phys. Lett. 2000, 77, 666.
[72]
Ghafurian M. M.; Niazmand H.; Dastjerd F. T.; Mahian O. Chem. Eng. Sci. 2019, 207, 79.
[73]
Guo C.-L.; Miao E.-D.; Zhao J.-X.; Liang L.; Liu Q. Sol. Energy 2019, 188, 1283.
[74]
Chen C.; Li Y.; Song J.; Yang Z.; Kuang Y.; Hitz E.; Jia C.; Gong A.; Jiang F.; Zhu J. Y.; Yang B.; Xie J.; Hu L. Adv. Mater. 2017, 29, 1701756.
[75]
Song J.; Li J.; Bai X.; Kang L.; Ma L.; Zhao N.; Wu S.; Xue Y.; Li J.; Ji X. J. Mater. Sci. Technol. 2021, 87, 83.
[76]
Deng Z.; Miao L.; Liu P.-F.; Zhou J.; Wang P.; Gu Y.; Wang X.; Cai H.; Sun L., Tanemura S. Nano Energy 2019, 55, 368.
[77]
Ito Y.; Tanabe Y.; Han J.; Fujita T.; Tanigaki K.; Chen M. Adv. Mater. 2015, 27, 4302.
[78]
Kim K.; Yu S.; An C.; Kim S.-W.; Jang J.-H. ACS Appl. Mater. Inter. 2018, 10, 15602.
[79]
Song C.; Irshad M. S.; Jin Y.; Hu J.; Liu W. Desalination 2022, 544, 116125.
[80]
Luo Q.; Yang Y.; Wang K.; Yu J.; Wang R.; Ji D.; Qin X. Sci. China Mater. 2023, DOI: 10.1007/s40843-023-2431-3.
[81]
Li L.; Liu Y.; Hao P.; Wang Z.; Fu L.; Ma Z.; Zhou J. Biomaterials 2015, 41, 132.
[82]
Xiao L.; Sun J.; Liu L.; Hu R.; Lu H.; Cheng C.; Huang Y.; Wang S.; Geng J. ACS Appl. Mater. Interfaces 2017, 9, 5382.
[83]
(a) Huang X.; Yu Y.-H.; de Llergo O. L.; Marquez S. M.; Cheng Z. RSC Adv. 2017, 7, 9495.
[83]
(b) Yang K.; Xu H.; Cheng L.; Sun C.; Wang J.; Liu Z. Adv. Mater. 2012, 24, 5586.
[84]
Wang Z.; Yan Y.; Shen X.; Jin C.; Sun Q.; Li H. J. Mater. Chem. A 2019, 7, 20706.
[85]
Mu P.; Bai W.; Fan Y.; Zhang Z.; Sun H.; Zhu Z.; Liang W.; Li A. J. Mater. Chem. A 2019, 7, 9673.
[86]
Zhou X.; Zhao F.; Guo Y.; Rosenberger B.; Yu G. Sci. Adv. 2019, 5, eaaw5484.
[87]
He J.; Foysal T. R.; Yang H.; Islam M.; Li L.; Li W.; Cui W. Mater. Lett. 2020, 261, 126962.
[88]
Zheng Z.; Liu H.; Wu D.; Wang X. Chem. Eng. J. 2022, 440, 135862.
[89]
Xu Y.; Tang C.; Ma J.; Liu D.; Qi D.; You S.; Cui F.; Wei Y.; Wang W. Environ. Sci. Technol. 2020, 54, 5150.
[90]
Zhang J.; Luo X.; Zhang X.; Xu Y.; Xu H.; Zuo J.; Liu D.; Cui F.; Wang W. Chin. Chem. Lett. 2021, 32, 1442.
[91]
Wu Y.; Shen L.; Zhang C.; Gao H.; Chen J.; Jin L.; Lin P.; Zhang H.; Xia Y. Desalination 2021, 505, 114766.
[92]
Lu X.; Yuan P.; Zhang W.; Wu Q.; Wang X.; Zhao M.; Sun P.; Huang W.; Fan Q. Polym. Chem. 2018, 9, 3118.
[93]
Shao B.; Wang Y.; Wu X.; Lu Y.; Yang X.; Chen G. Y.; Owens G.; Xu H. J. Mater. Chem. A 2020, 8, 11665.
[94]
Chen P.; Ma Y.; Zheng Z.; Wu C.; Wang Y.; Liang G. Nat. Commun. 2019, 10, 1192.
[95]
Li H. C.; Li H. N.; Zou L. Y.; Li Q.; Chen P. F.; Quan X. N.; Deng K.; Sheng C. Q.; Ji J.; Fan. Q.; Xu Z. K.; Wan J. H. J. Mater. Chem. A 2023, 11, 2933.
[96]
Ma S.; Qarony W.; Hossain M. I.; Yip C. T.; Tsang Y. H. Sol. Energy Mater. Sol. Cells 2019, 196, 36.
[97]
(a) Elimelech M.; Phillip W. A. Science 2011, 333, 712.
[97]
(b) Gao M.; Zhu L.; Peh C. K.; Ho G. W. Energy Environ. Sci. 2019, 12, 841.
[98]
(a) Shi Y.; Yang J.; Gao F.; Zhang Q. ACS Nano 2023, 17, 1879.
[98]
(b) Kong L.; Liu M.; Huang H.; Xu Y.; Bu X. H. Adv. Energy Mater. 2022, 12, 2100172.
[98]
(c) Li L. L.; Liu S.; Zhang Q.; Hu N. T.; Wei L. M.; Yang Z.; Wei H. Acta Phys.-Chim. Sin. 2017, 33, 1960. (in Chinese)
[98]
( 李路路, 刘帅, 章琴, 胡南滔, 魏良明, 杨志, 魏浩, 物理化学学报, 2017, 33, 1960.)
[98]
(d) Zhou B.; Chen L. Acta Chim. Sinica 2015, 73, 487. (in Chinese)
[98]
( 周宝龙, 陈龙, 化学学报, 2015, 73, 487.)
[99]
Cui W.-R.; Zhang C.-R.; Liang R.-P.; Liu J.; Qiu J.-D. ACS Appl. Mater. Inter. 2021, 13, 31561.
[100]
Xia Z. J.; Yang H. C.; Chen Z.; Waldman R. Z.; Zhao Y.; Zhang C.; Patel S. N.; Darling S. B. Adv. Mater. Interfaces 2019, 6, 1900254.
[101]
Jia S.; Hao L.; Liu Y.; Lin E.; Liu W.; Yang Y.; Tian Y.; Peng Y.; Cheng P.; Chen Y.; Zhang Z. ACS Mater. Lett. 2023, 5, 458.
[102]
Fang Z.; Bueken B.; De Vos D. E.; Fischer R. A. Angew. Chem., Int. Ed. 2015, 54, 7234.
[103]
Chen Z.; Su Y.; Tang X.; Zhang X.; Duan C.; Huang F.; Li Y. Sol. RRL 2021, 5, 2100762.
[104]
(a) Wang H.; Zhao J.; Li Y.; Cao Y.; Zhu Z.; Wang M.; Zhang R.; Pan F.; Jiang Z. Nano-Micro Lett. 2022, 14, 216.
[104]
(b) Wang M.; Wang Y.; Zhao J.; Zou J.; Liang X.; Zhu Z.; Zhu J.; Wang H.; Wang Y.; Pan F.; Jang Z. Angew. Chem., Int. Ed. 2023, 62, e202219084.
[104]
(c) Zhou W.; Wei M.; Zhang X.; Xu F.; Wang Y. ACS Appl. Mater. Inter. 2019, 11, 16847.
[105]
(a) Sumida K.; Rogow D. L.; Mason J. A.; McDonald T. M.; Bloch E. D.; Herm Z. R.; Bae T.-H.; Long J. R. Chem. Rev. 2012, 112, 724.
[105]
(b) Wang C.; Kim J.; Tang J.; Kim M.; Lim H.; Malgras V.; You J.; Xu Q.; Li J.; Yamauchi Y. Chem 2020, 6, 19.
[105]
(c) Zhong M.; Kong L.; Zhao K.; Zhang Y. H.; Li N.; Bu X. H. Adv. Sci. 2021, 8, 2001980.
[106]
Chen G.; Jiang Z.; Li A.; Chen X.; Ma Z.; Song H. J. Mater. Chem. A 2021, 9, 16805.
[107]
Ma Q.; Yin P.; Zhao M.; Luo Z.; Huang Y.; He Q.; Yu Y.; Liu Z.; Hu Z.; Chen B. Adv. Mater. 2019, 31, 1808249.
[108]
Wang J.; Wang W.; Li J.; Mu X.; Yan X; Wang Z.; Su J.; Lei T.; Wang C. ACS Appl. Mater. Inter. 2021, 13, 45944.
[109]
Zhou S.; Kong X.; Str?mme M.; Xu C. ACS Mater. Lett. 2022, 4, 1058.
[110]
Yao Z. Q.; Wang K.; Liu R.; Yuan Y. J.; Pang J. J.; Li Q. W.; Shao T. Y.; Li Z. G.; Feng R.; Zou B.; Li W.; Xu J.; Bu X. H. Angew. Chem., Int. Ed. 2022, 61, e202202073.
文章导航

/