基于共价有机框架修饰电极的维生素A和C的选择性检测★
收稿日期: 2023-04-27
网络出版日期: 2023-06-25
基金资助
项目受国家自然科学基金(22125405); 项目受国家自然科学基金(22074131); 项目受国家自然科学基金(21874117); 国家重点研发计划(2019YFB2204903)
Selective Detection of Vitamins A and C based on Covalent Organic Framework Modified Electrodes★
Received date: 2023-04-27
Online published: 2023-06-25
Supported by
National Natural Science Foundation of China(22125405); National Natural Science Foundation of China(22074131); National Natural Science Foundation of China(21874117); National Key Research and Development Program of China(2019YFB2204903)
电极界面的设计与调控, 对于实现复杂样品中待测物质的准确分析具有重要意义. 用1,3,5-三(4-氨苯基)苯(TAPB)分别与对苯二甲醛(PDA)和溴取代对苯二甲醛(BrPDA)缩聚, 在液/液界面上制备了两种亲疏水性不同的共价有机框架(COF)膜, 并将其转移到氧化铟锡玻璃(ITO)电极上, 研究了疏水性的维生素A (VA)和亲水性的维生素C (VC)在两种COF修饰电极上的电化学响应. 结果显示, TAPB-BrPDA COF/ITO电极表面较为疏水, 在排阻VC的同时可对VA进行选择性的电化学检测, 线性范围为5~100 μmol/L, 检出限为1.32 μmol/L. 而TAPB-PDA COF/ITO电极则恰好相反, 可排阻VA而对VC有较好的选择性, 电化学检测的线性范围为5~200 μmol/L, 检出限为1.35 μmol/L. 因此, 两种电极可用于维生素复合片中VA和VC的定量测定, 回收率分别达到104%和101%.
杨蓉婕 , 周璘 , 苏彬 . 基于共价有机框架修饰电极的维生素A和C的选择性检测★[J]. 化学学报, 2023 , 81(8) : 920 -927 . DOI: 10.6023/A23040170
The engineering and regulation of electrode interfaces are of great significance for accurate analysis of specific analyte in complex samples. Covalent organic frameworks (COF), as a class of crystalline polymers formed precisely and periodically by building blocks, have provoked exponential interest due to their pre-designable and adjustable pore sizes, hydrophobicity, geometry and so on. Therefore, varying the structures of monomers is able to modulate the molecular permeability of COF and achieve selective detection of different analytes. In this work, the polycondensation reaction between the amine monomer, namely 1,3,5-tris(4-aminophenyl) benzene (TAPB), and two different aldehyde monomers, namely terephthalaldehyde (PDA) and 2,5-dibromoterephthalaldehyde (BrPDA), at the liquid/liquid interface was conducted to prepare continuous and uniform imine-linked covalent organic framework (COF) membranes. The membranes were subsequently transferred onto the surface of indium tin oxide (ITO) glass electrodes and then the electrochemical responses of hydrophobic vitamin A (VA) and hydrophilic vitamin C (VC) at two COF modified electrodes were investigated. Due to the existing of Br groups on the pore walls of TAPB-BrPDA COF, it is hydrophobic with a contact angle of 122°, while the TAPB-PDA COF membrane is hydrophilic with a contact angle of 73°. The electrochemical responses of two COF modified electrodes towards hydrophobic VA and hydrophilic VC were studied in 1 mol/L NaCl solution. The results of cyclic voltammetry revealed that TAPB-BrPDA COF could prohibit effectively the permeability of VC whereas allow that of VA, eventually achieving the selective electrochemical detection of the latter with a detection linear range of 5~100 μmol/L and a limit of detection at 1.32 μmol/L. In contrast, TAPB-PDA COF/ITO electrode can reject the access of VA whereas permit that of VC, thus showing good electrochemical selectivity toward VC and yielding a linear detection range of 5~200 μmol/L and a limit of detection at 1.35 μmol/L. Finally, two electrodes were successfully used for the quantitative determination of VA and VC in multivitamin tablets with recoveries of 104% and 101%, respectively. This work constitutes a step in the surface engineering of electrodes by COF to realize pre-designed composition and functions and thus excellent selectivity towards specific molecules.
[1] | Johnson L. E. Crit. Rev. Food Sci. Nutr. 1995, 35, 149. |
[2] | Berry W. T.; Darke S. J. Practitioner 1968, 201, 305. |
[3] | Darnton Hill I. Curr. Dev. Nutr. 2019, 3, nzz075. |
[4] | Petteys B. J.; Frank E. L. Clin. Chim. Acta 2011, 412, 38. |
[5] | Vidovi? S.; Stojanovi? B.; Veljkovi? J.; Pra?i? Arsi? L.; Rogli? G.; Manojlovi? D. J. Chromatogr. A 2008, 1202, 155. |
[6] | Woollard D. C.; Bensch A.; Indyk H.; McMahon A. Food Chem. 2016, 197, 457. |
[7] | Dziomba S.; Kowalski P.; B?czek T. J. Chromatogr. A. 2012, 1267, 224. |
[8] | Wang X.; Li K.; Yao L.; Wang C.; Van Schepdael A. J. Pharm. Biomed. Anal. 2018, 147, 278. |
[9] | Li C.; Yang Q.; Wang X.; Arabi M.; Peng H.; Li J.; Xiong H.; Chen L. Food Chem. 2020, 319, 126575. |
[10] | Wang M.; Liu Y.; Ren G.; Wang W.; Wu S.; Shen J. Anal. Chim. Acta 2018, 1032, 154. |
[11] | Yang K.; Wang Y.; Lu C.; Yang X. J. Lumin. 2018, 196, 181. |
[12] | Kumar M.; Kumara Swamy B. E.; Reddy S.; Zhao W.; Chetana S.; Gowrav Kumar V. J. Electroanal. Chem. 2019, 835, 96. |
[13] | Wahyuni W. T.; Putra B. R.; Marken F. Analyst 2020, 145, 1903. |
[14] | Yao S.; Li G.; Liu Y.; Wei S.; Wang H.; Huang X.; Luo Z. Sens. Actuators, B 2018, 274, 324. |
[15] | Deepa J. R.; Anirudhan T. S.; Soman G.; Sekhar V. C. Microchem. J. 2020, 159, 105489. |
[16] | Kuceki M.; de Oliveira F. M.; Segatelli M. G.; Coelho M. K. L.; Pereira A. C.; da Rocha L. R.; de Cássia Mendon?a J.; Tarley C. R. T. J. Electroanal. Chem. 2018, 818, 223. |
[17] | Prasad B. B.; Singh R.; Singh K. Sens. Actuators, B 2017, 246, 38. |
[18] | Sun G.; Wang P.; Ge S.; Ge L.; Yu J.; Yan M. Biosens. Bioelectron. 2014, 56, 97. |
[19] | Tonelli D.; Ballarin B.; Guadagnini L.; Mignani A.; Scavetta E. Electrochim. Acta 2011, 56, 7149. |
[20] | Li W.; Ding L.; Wang Q.; Su B. Analyst 2014, 139, 3926. |
[21] | Yan F.; Su B. Anal. Chem. 2016, 88, 11001. |
[22] | Yang Q.; Lin X.; Su B. Anal. Chem. 2016, 88, 10252. |
[23] | Zhou Z.; Guo W.; Xu L.; Yang Q.; Su B. Anal. Chim. Acta 2015, 886, 48. |
[24] | Oh H.; Kalidindi S. B.; Um Y.; Bureekaew S.; Schmid R.; Fischer R. A.; Hirscher M. Angew. Chem., Int. Ed. 2013, 52, 13219. |
[25] | Qian H. L.; Yang C. X.; Yan X. P. Nat. Commun. 2016, 7, 12104. |
[26] | Zhou W.; Wei M.; Zhang X.; Xu F.; Wang Y. ACS Appl. Mater. Interfaces 2019, 11, 16847. |
[27] | Fang J.; Zhao W.; Zhang M.; Fang Q. Acta Chim. Sinica 2021, 79, 186. (in Chinese) |
[27] | ( 方婧, 赵文娟, 张明浩, 方千荣, 化学学报, 2021, 79, 186.) |
[28] | Li J.; Xiao Y.; Shui F.; Yi M.; Zhang Z.; Liu X.; Zhang L.; You Z.; Yang R.; Yang S.; Li B.; Bu X. Chin. J. Chem. 2022, 40, 2445. |
[29] | Wang Z.; Liu Y.; Wang Y.; Fang Q. Acta Chim. Sinica 2022, 80, 37. (in Chinese) |
[29] | ( 王自陶, 刘耀祖, 王钰杰, 方千荣, 化学学报, 2022, 80, 37.) |
[30] | Bhadra M.; Kandambeth S.; Sahoo M. K.; Addicoat M.; Balaraman E.; Banerjee R. J. Am. Chem. Soc. 2019, 141, 6152. |
[31] | Li H.; Pan Q.; Ma Y.; Guan X.; Xue M.; Fang Q.; Yan Y.; Valtchev V.; Qiu S. J. Am. Chem. Soc. 2016, 138, 14783. |
[32] | Zhang J.; Han X.; Wu X.; Liu Y.; Cui Y. J. Am. Chem. Soc. 2017, 139, 8277. |
[33] | Chen L.; Furukawa K.; Gao J.; Nagai A.; Nakamura T.; Dong Y.; Jiang D. J. Am. Chem. Soc. 2014, 136, 9806. |
[34] | Cui W.; Li F.; Xu R.; Zhang C.; Chen X.; Yan R.; Liang R.; Qiu J. Angew. Chem., Int. Ed. 2020, 59, 17684. |
[35] | Li N.; Wang C.; Chen L.; Ye C.; Peng Y. Molecules 2022, 27, 6732. |
[36] | Cao D.; Lan J.; Wang W.; Smit B. Angew. Chem., Int. Ed. 2009, 48, 4730. |
[37] | Qiu X.; Huang J.; Yu C.; Zhao Z.; Zhu H.; Ke Z.; Liao P.; Chen X. Angew. Chem., Int. Ed. 2022, 61, e202206470. |
[38] | Xu F.; Xu H.; Chen X.; Wu D.; Wu Y.; Liu H.; Gu C.; Fu R.; Jiang D. Angew. Chem., Int. Ed. 2015, 54, 6814. |
[39] | Benyettou F.; Das G.; Nair A. R.; Prakasam T.; Shinde D. B.; Sharma S. K.; Whelan J.; Lalatonne Y.; Traboulsi H.; Pasricha R.; Abdullah O.; Jagannathan R.; Lai Z.; Motte L.; Gándara F.; Sadler K. C.; Trabolsi A. J. Am. Chem. Soc. 2020, 142, 18782. |
[40] | Fang Q.; Wang J.; Gu S.; Kaspar R. B.; Zhuang Z.; Zheng J.; Guo H.; Qiu S.; Yan Y. J. Am. Chem. Soc. 2015, 137, 8352. |
[41] | Mitra S.; Sasmal H. S.; Kundu T.; Kandambeth S.; Illath K.; Díaz Díaz D.; Banerjee R. J. Am. Chem. Soc. 2017, 139, 4513. |
[42] | Ascherl L.; Evans E. W.; Gorman J.; Orsborne S.; Bessinger D.; Bein T.; Friend R. H.; Auras F. J. Am. Chem. Soc. 2019, 141, 15693. |
[43] | Liang H.; Wang L.; Yang Y.; Song Y.; Wang L. Biosens. Bioelectron. 2021, 193, 113553. |
[44] | Ma X.; Pang C.; Li S.; Xiong Y.; Li J.; Luo J.; Yang Y. Biosens. Bioelectron. 2019, 146, 111734. |
[45] | Haotian R.; Zhu Z.; Cai Y.; Wang W.; Wang Z.; Liang A.; Luo A. Acta Chim. Sinica 2022, 80, 1524. (in Chinese) |
[45] | ( 浩天瑞霖, 朱子煜, 蔡艳慧, 王微, 王祯, 梁阿新, 罗爱芹, 化学学报, 2022, 80, 1524.) |
[46] | Dey K.; Pal M.; Rout K. C.; Kunjattu H. S.; Das A.; Mukherjee R.; Kharul U. K.; Banerjee R. J. Am. Chem. Soc. 2017, 139, 13083. |
[47] | Zhang W.; Zhang L.; Zhao H.; Li B.; Ma H. J. Mater. Chem. A. 2018, 6, 13331. |
[48] | Wang L.; Xie H.; Lin Y.; Wang M.; Sha L.; Yu X.; Yang J.; Zhao J.; Li G. Biosens. Bioelectron. 2022, 217, 114668. |
[49] | Han Y.; Lu J.; Wang M.; Sun C.; Yang J.; Li G. J. Electroanal. Chem. 2022, 920, 116576. |
[50] | Lu J.; Wang M.; Han Y.; Deng Y.; Zeng Y.; Li C.; Yang J.; Li G. Anal. Chem. 2022, 94, 5055. |
[51] | Yang R.; Liu S.; Sun Q.; Liao Q.; Xi K.; Su B. J. Am. Chem. Soc. 2022, 144, 11778. |
/
〈 |
|
〉 |