有机高价溴试剂的合成及其应用研究
收稿日期: 2023-04-30
网络出版日期: 2023-06-26
基金资助
项目受国家自然科学基金(22271069); 项目受国家自然科学基金(21871067); 广东省基础与应用基础研究基金项目(2021A1515010190); 广东省基础与应用基础研究基金项目(2023A1515012457)
Synthesis and Application of Organic Hypervalent Bromine Reagents
Received date: 2023-04-30
Online published: 2023-06-26
Supported by
National Natural Science Foundation of China(22271069); National Natural Science Foundation of China(21871067); Guangdong Basic and Applied Basic Research Foundation(2021A1515010190); Guangdong Basic and Applied Basic Research Foundation(2023A1515012457)
甘绍艳 , 钟晟昱 , 王力廷 , 史雷 . 有机高价溴试剂的合成及其应用研究[J]. 化学学报, 2023 , 81(8) : 1030 -1042 . DOI: 10.6023/A23040173
In recent decades, with the rapid development of organic synthetic chemistry, organic hypervalent halogen reagents have drawn considerable research interest on the synthesis and application of organic hypervalent bromine reagents. Compared with traditional organic hypervalent iodine reagents, organic hypervalent bromine reagents have stronger oxidation capacity and reactivity, thus enabling their important application potential in organic synthesis. On the basis of different substituents of organic hypervalent bromine reagents, the diaryl-λ3-bromanes, dialkyl-λ3-bromanes, alkenyl-λ3-bromanes, alkyne-λ3-bromanes and heteroatomic-λ3-bromanes are summarized and discussed successively. The synthetic methods of different types of hypervalent bromine reagents and their applications in organic reactions are also reviewed.
[1] | Musher J. I. Angew. Chem., Int. Ed. 1969, 8, 54. |
[2] | Jensen W. B. J. Chem. Educ. 2006, 83, 1751. |
[3] | Pauling L. J. Am. Chem. Soc. 1932, 54, 3570. |
[4] | Zhu D.; Yao Y.; Zhao R.; Liu Y.; Shi L. Chem.-Eur. J. 2018, 24, 4805. |
[5] | Taylor M. T.; Nelson J. E.; Suero M. G.; Gaunt M. J. Nature 2018, 562, 563. |
[6] | Banik S. M.; Medley J. W.; Jacobsen E. N. Science 2016, 353, 6294. |
[7] | (a) Yoshimura A.; Zhdankin V. V. Chem. Rev. 2016, 116, 3328. |
[7] | (b) Zhao R.; Shi L. Angew. Chem., Int. Ed. 2020, 59, 12282. |
[7] | (c) Zhdankin V. V.; Stang P. J. Chem. Rev. 2008, 108, 5299. |
[7] | (d) Song A. R.; Zhang C. Acta Chim. Sinica 2015, 73, 1002. (in Chinese) |
[7] | ( 宋爱茹, 张弛, 化学学报, 2015, 73, 1002.) |
[7] | (e) Duan Y. N.; Jiang S. N.; Han Y. C.; Sun B.; Zhang C. Chin. J. Org. Chem. 2016, 36, 1973. (in Chinese) |
[7] | ( 段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973.) |
[7] | (f) Cai Q.; Ma H. W. Acta Chim. Sinica 2019, 77, 213. (in Chinese) |
[7] | ( 蔡倩, 马浩文, 化学学报, 2019, 77, 213.) |
[8] | Pauling L. J. Am. Chem. Soc. 1932, 54, 3570. |
[9] | CRC Handbook of Chemistry and Physics, Ed.: Lide, D. R., CRC Press, Boca Raton, FL, 1992, pp. 1-2408. |
[10] | (a) Ochiai M. Synlett 2009, 159. |
[10] | (b) Farooq U.; Shah A.-H. A.; Wirth T. Angew. Chem., Int. Ed. 2009, 48, 101. |
[10] | (c) Miyamoto K. PATAI’S Chemistry of Functional Groups, Ed.: Rappoport, Z., Wiley, Chichester, 2018, pp. 1-25. |
[11] | Leneau P. Ann. Chim. Phys. 1906, 9, 241. |
[12] | Sandin R. B.; Hay A. S. J. Am. Chem. Soc. 1952, 74, 274. |
[13] | Miyamoto K.; Saito M.; Tsuji S.; Takagi T.; Shiro M.; Uchiyama M.; Ochiai M. J. Am. Chem. Soc. 2021, 143, 9327. |
[14] | (a) Nesmeyanov A. N.; Vanchikov A. N.; Lisichkina I. N.; Lazarev V. V.; Tolstaya T. P. Dokl. Akad. Nauk SSSR 1980, 255, 1136. |
[14] | (b) Nesmeyanov A. N.; Vanchikov A. N.; Lisichkina I. N.; Khruscheva N. S.; Tolstaya T. P. Dokl. Akad. Nauk SSSR 1980, 254, 652. |
[15] | Holleman A. F.; Wiberg E. Inorganic Chemistry, Academic Press, San Diego, 2001. |
[16] | Frohn H. J.; Giesen M. J. Fluorine Chem. 1984, 24, 9. |
[17] | Lanzi M.; Dherbassy Q.; Wencel-Delord J. Angew. Chem., Int. Ed. 2021, 60, 14852. |
[18] | (a) Grushin V. V. Chem. Soc. Rev. 2000, 29, 315. |
[18] | (b) Chatterjee N.; Goswami A. Eur. J. Org. Chem. 2017, 2017, 3023. |
[19] | Lanzi M.; Ali Abdine R. A.; De Abreu M.; Wencel-Delord J. Org. Lett. 2021, 23, 9047. |
[20] | Zhang Y.; Han J.; Liu Z. RSC Adv. 2015, 5, 25485. |
[21] | Yoshida Y.; Ishikawa S.; Mino T.; Sakamoto M. Chem. Commun. 2021, 57, 2519. |
[22] | Yoshida Y.; Mino T.; Sakamoto M. ACS Catal. 2021, 11, 13028. |
[23] | Olah G. A.; DeMember J. R. J. Am. Chem. Soc. 1969, 91, 2113. |
[24] | Slebocka-Tilk H.; Ball R. G.; Brown R. S. J. Am. Chem. Soc. 1985, 107, 4504. |
[25] | Prakash G. K. S.; Bruce M. R.; Olah G. A. J. Org. Chem. 1985, 50, 2405. |
[26] | Ochiai M.; Nishi Y.; Mori T.; Tada N.; Suefuji T.; Frohn H. J. J. Am. Chem. Soc. 2005, 127, 10460. |
[27] | Miyamoto K.; Shiro M.; Ochiai M. Angew. Chem., Int. Ed. 2009, 48, 8931. |
[28] | Ochiai M. J. Organomet. Chem. 2000, 611, 494. |
[29] | Ochiai M.; Okubo T.; Miyamoto K. J. Am. Chem. Soc. 2011, 133, 3342. |
[30] | Ochiai M.; Tada N.; Okada T.; Sota A.; Miyamoto K. J. Am. Chem. Soc. 2008, 130, 2118. |
[31] | Ochiai M.; Nishi Y.; Goto S.; Shiro M.; Frohn H. J. J. Am. Chem. Soc. 2003, 125, 15304. |
[32] | (a) Kitamura T.; Stang P. J. J. Org. Chem. 1988, 53, 4105. |
[32] | (b) Stang P.J.; Surber B. W.; Chen Z.-C.; Roberts K. A.; Anderson A. G. J. Am. Chem. Soc. 1987, 109, 228. |
[33] | Ochiai M.; Nishi Y.; Goto S.; Shiro M.; Frohn H. J. J. Am. Chem. Soc. 2003, 125, 15304. |
[34] | (a) Donaldson R. E.; Fuchs P. L. J. Am. Chem. Soc. 1981, 103, 2108. |
[34] | (b) Saddler J. C.; Fuchs P. L. J. Am. Chem. Soc. 1981, 103, 2112. |
[34] | (c) Paquette L. A.; Lin H. S.; Gunn B. P.; Coghlan M. J. J. Am. Chem. Soc. 1988, 110, 5818. |
[35] | Ochiai M.; Nishi Y.; Goto S.; Frohn H. J. Angew. Chem., Int. Ed. 2005, 44, 406. |
[36] | Ochiai M.; Tada N. Chem. Commun. 2005, 5083. |
[37] | (a) Evans D. A.; Faul M. M.; Bilodeau M. T. J. Am. Chem. Soc. 1994, 116, 2742. |
[37] | (b) Li Z.; Quan R. W.; Jacobsen E. N. J. Am. Chem. Soc. 1995, 117, 5889. |
[38] | Ochiai M.; Kaneaki T.; Tada N.; Miyamoto K.; Chuman H.; Shiro M.; Hayashi S.; Nakanishi W. J. Am. Chem. Soc. 2007, 129, 12938. |
[39] | Hoque M. M.; Miyamoto K.; Tada N.; Shiro M.; Ochiai M. Org. Lett. 2011, 13, 5428. |
[40] | Miyamoto K.; Ota T.; Hoque M. M.; Ochiai M. Org. Biomol. Chem. 2015, 13, 2129. |
[41] | Espino C. G.; Bois J. D. In Modern Rhodium-Catalyzed Organic Reactions, Ed.: Evans, P. A., Wiley-VCH, Weinheim, 2005, p. 379 and references therein. |
[42] | Ochiai M.; Miyamoto K.; Kaneaki T.; Hayashi S.; Nakanishi W.; Science 2011, 332, 448. |
[43] | Miyamoto K.; Shiro M.; Ochiai M. Angew. Chem., Int. Ed. 2009, 48, 8931. |
[44] | Ochiai M.; Yoshimura A.; Mori T.; Nishi Y.; Hirobe M. J. Am. Chem. Soc. 2008, 130, 3742. |
[45] | Ochiai M.; Yoshimura A.; Miyamoto K.; Hayashi S.; Nakanishi W. J. Am. Chem. Soc. 2010, 132, 9236. |
[46] | Ochiai M.; Tada N.; Murai K.; Goto S.; Shiro M. J. Am. Chem. Soc. 2006, 128, 9608. |
[47] | Miyamoto K.; Iwasaki S.; Doi R.; Ota T.; Kawano Y.; Yamashita J.; Sakai Y.; Tada N.; Ochiai M.; Hayashi S.; Nakanishi W.; Uchiyama M. J. Org. Chem. 2016, 81, 3188. |
[48] | Nguyen T. T.; Martin J. C. J. Am. Chem. Soc. 1980, 102, 7382. |
[49] | Sokolovs I.; Mohebbati N.; Francke R.; Suna E. Angew. Chem., Int. Ed. 2021, 60, 15832. |
/
〈 |
|
〉 |