碱(土)金属/双层α-硼烯纳米复合体的结构和功函性质的理论研究
收稿日期: 2023-05-06
网络出版日期: 2023-06-28
基金资助
国家自然科学基金(21601054); 中国博士后科学基金(2020M670935); 黑龙江省省属高校基本科研业务费科研项目(2021-KYYWF0009); 国家大学生创新创业训练计划项目(202210212029); 国家大学生创新创业训练计划项目(2022041); 国家大学生创新创业训练计划项目(202310212033)
Structure and Work Function of Alkaline (Earth) Metal-Bilayer α-Borophene Nanocomposite: A Theoretical Study
Received date: 2023-05-06
Online published: 2023-06-28
Supported by
National Natural Science Foundation of China(21601054); Project funded by China Postdoctoral Science Foundation(2020M670935); Fundamental Research Funds for the Provincial Universities(2021-KYYWF0009); Training Program of Innovation and Entrepreneurship for Undergraduates of China(202210212029); Training Program of Innovation and Entrepreneurship for Undergraduates of China(2022041); Training Program of Innovation and Entrepreneurship for Undergraduates of China(202310212033)
功函可调硼烯基电极材料可有效提升载流子的迁移效率, 因此对于最大化器件的能量转换效率及性能至关重要. 基于第一性原理密度泛函理论, 研究了碱(土)金属吸附双层α-硼烯(M/DBBP; M=Li~Cs; Be~Ba)纳米复合材料的几何、稳定性、电子结构和功函随M电离能(IP)的变化规律. 结果表明, 所研究的10个M/DBBP体系均是热、动力学稳定的. M/DBBP体系的M—B键长、结合能、吸附原子与DBBP之间的电子转移和功函均与吸附原子IP呈(近)线性关系. 由于Li和Be的尺寸非常小, 其大幅增加的M—B成键区域导致Li/DBBP和Be/DBBP的结合能偏离了与其吸附原子IP之间的线性关系. 由于Ca/DBBP中层间区域形成了独特的多中心键, 使得Ca/DBBP的层间相互作用强度显著高于其余9个体系. M/DBBP保持了金属性, 碱(土)金属原子与DBBP之间的成键方式均为离子键. 此外, 吸附原子向基体转移的电荷数和诱导偶极矩均随吸附原子IP的减小而增加, 是碱(土)金属/DBBP功函降低的主要原因. 本研究揭示了M/DBBP复合体的几何、稳定性、电子结构和功函的变化规律, 为深入认识上述科学问题, 以及实验上设计功函可调的硼烯基电极材料提供理论依据.
郑冰 , 王喆 , 何静 , 张姣 , 戚文博 , 张梦圆 , 于海涛 . 碱(土)金属/双层α-硼烯纳米复合体的结构和功函性质的理论研究[J]. 化学学报, 2023 , 81(10) : 1357 -1370 . DOI: 10.6023/A23050210
Work function-adjustable borophene-based electrode materials are of significant importance for achieving the maximum energy conversion efficiency of electronic devices owing to their vital role in efficient transferring of carriers. Accordingly, understanding the regularity in the gradation of the work function for adatom-borophene nanocomposites with diverse adatoms will facilitate the design of such materials. Herein, the structural stabilities, electronic structures, and work functions of M-decorated experimentally available bilayer α-borophene (M/DBBP; M=Li~Cs; Be~Ba) are investigated systematically. The results obtained indicate that M/DBBP are all thermodynamically and kinetically stable. Moreover, M—B bond length, binding energy (Eb), electron transfer between M and DBBP, and work function (ϕ) are linearly dependent on the ionization potential (IP) in the same adatom family for these investigated systems. Furthermore, we report the two exceptional binding energies of Li/DBBP and Be/DBBP, which deviate from abovementioned IP dependence, owing to their extremely small adatoms and the resulting significantly enhanced effective M—B bonding areas. Impressively, the forming interlayer multi-centered B—B bonds lead to a significantly enhanced interlayer interaction of Ca/DBBP relative to other nine M/DBBP systems. In addition to interpreting that the metallic M/DBBP possesses ionic sp-p and dsp-p bonds for M1/DBBP (M1=Li, Na, Be, Mg, Sr, and Ba) and M2/DBBP (M2=K, Rb, Cs, and Ca), respectively, in particular, we confirm that the positive IP dependence of ϕ for alkali (earth) metal/DBBP originates from the synergistic effect of charge rearrangement and the increasing induced dipole moment. Our predictions not only provide guidance to the experimental efforts towards the realization of work function-adjustable borophene-based electrodes, which can be utilized as cathode materials in electronic devices, but also present a rational understanding of the bonding rules between varying alkali (earth) metal adatoms and bilayer α-borophene.
Key words: bilayer borophene; work function; adsorption; electronic structure; binding energy
[1] | Zhang, Z.; Lin, P.; Liao, Q.; Kang, Z.; Si, H.; Zhang, Y. Adv. Mater. 2019, 31, 1806411. |
[2] | Zhang, D.; Yuan, Z.; Zhang, G.; Tian, N.; Liu, D.; Zhang, Y. Acta Chim. Sinica 2018, 76, 537 (in Chinese). |
[2] | (张丹丹, 袁振洲, 张国庆, 田楠, 刘丹敏, 张永哲, 化学学报, 2018, 76, 537.) |
[3] | Chang, Z.-W.; Meng, F.-L.; Zhong, H.-X.; Zhang, X.-B. Chin. J. Chem. 2018, 36, 287 (in Chinese). |
[3] | (常志伟, 孟樊露, 钟海霞, 张新博, 中国化学, 2018, 36, 287.) |
[4] | Yuan, Z.; Liu, D.; Tian, N.; Zhang, G.; Zhang, Y. Acta Chim. Sinica 2016, 74, 488 (in Chinese). |
[4] | (袁振洲, 刘丹敏, 田楠, 张国庆, 张永哲, 化学学报, 2016, 74, 488.) |
[5] | Han, Y.; Geng, Z.; Wang, Y.; Liang, J.; Yan, P. Acta Chim. Sinica 2009, 67, 773 (in Chinese). |
[5] | (韩彦霞, 耿志远, 王永成, 梁俊玺, 闫盆吉, 化学学报, 2009, 67, 773.) |
[6] | Zhang, L.; Gao, S.; Liu, W.; Tang, R.; Shang, N.; Wang, C.; Wang, Z. Chin. J. Org. Chem. 2014, 34, 1542 (in Chinese). |
[6] | (张丽, 高书涛, 刘伟华, 唐然肖, 商宁昭, 王春, 王志, 有机化学, 2014, 34, 1542.) |
[7] | Seo, J.-T.; Bong, J.; Cha, J.; Lim, T.; Son, J.; Park, S. H.; Hwang, J.; Hong, S.; Ju, S. J. Appl. Phys. 2014, 116, 084312. |
[8] | Kwon, K. C.; Choi, K. S.; Kim, S. Y. Adv. Funct. Mater. 2012, 22, 4724. |
[9] | Jia, T.; Zheng, N.; Cai, W.; Ying, L.; Huang, F. Acta Chim. Sinica 2017, 75, 808 (in Chinese). |
[9] | (贾涛, 郑楠楠, 蔡万清, 应磊, 黄飞, 化学学报, 2017, 75, 808.) |
[10] | Zhang, K.; Guan, X.; Huang, F.; Cao, Y. Acta Chim. Sinica 2012, 70, 2489 (in Chinese). |
[10] | (张凯, 管星, 黄飞, 曹镛, 化学学报, 2012, 70, 2489.) |
[11] | Wang, B.; Gunther, S.; Wintterlin, J.; Bocquet, M. L. New J. Phys. 2010, 12, 043041. |
[12] | Shin, H.-J.; Choi, W. M.; Choi, D.; Han, G. H.; Yoon, S.-M.; Park, H.-K.; Kim, S.-W.; Jin, Y. W.; Lee, S. Y.; Kim, J. M.; Choi, J.-Y.; Lee, Y. H. J. Am. Chem. Soc. 2010, 132, 15603. |
[13] | Bae, G.; Cha, J.; Lee, H.; Park, W.; Park, N. Carbon 2012, 50, 851. |
[14] | Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Nat. Nanotechnol. 2008, 3, 210. |
[15] | Wang, Y.; Tong, S. W.; Xu, X. F.; ?zyilmaz, B.; Loh, K. P. Adv. Mater. 2011, 23, 1514. |
[16] | Chan, K. T.; Neaton, J. B.; Cohen, M. L. Phys. Rev. B 2008, 77, 235430. |
[17] | Legesse, M.; Rashkeev, S. N.; Al-Dirini, F.; Alharbi, F. H. Appl. Surf. Sci. 2020, 509, 144893. |
[18] | Legesse, M.; Mellouhi, F. E.; Bentria, E. T.; Madjet, M. E.; Fisher, T. S.; Kais, S.; Alharbi, F. H. Appl. Surf. Sci. 2017, 394, 98. |
[19] | Sherpa, S. D.; Levitin, G.; Hess, D. W. Appl. Phys. Lett. 2012, 101, 111602. |
[20] | Cho, H.; Dae Kim, S.; Han, T.-H.; Song, I.; Byun, J.-W.; Kim, Y.-H.; Kwon, S.; Bae, S.-H.; Cheul Choi, H.; Ahn, J.-H.; Lee, T.-W. 2D Mater. 2014, 2, 014002. |
[21] | Hao, J.-H.; Wang, Z.-J.; Wang, Y.-F.; Yin, Y.-H.; Jiang, R.; Jin, Q.-H. Solid State Sci. 2015, 50, 69. |
[22] | Taylor, P. D.; Osborne, D. A.; Tawfik, S. A.; Morishita, T.; Spencer, M. J. S. Phys. Chem. Chem. Phys. 2019, 21, 7165. |
[23] | Wang, L.; Gao, J.; Ding, F. Acta Chim. Sinica 2014, 72, 3. |
[23] | (王璐, 高俊峰, 丁峰, 物理化学学报, 2014, 72, 3.) |
[24] | Xu, Z.; Li, Y.; Shi, P.; Wang, B.; Huang, X. Chin. J. Org. Chem. 2013, 33, 2162 (in Chinese). |
[24] | (徐志远, 李永军, 史萍, 王博婵, 黄晓宇, 有机化学, 2013, 33, 2162.) |
[25] | Wang, Q.; Xue, M.; Zhang, Z. Acta Phy.-Chim. Sinica 2019, 35, 565 (in Chinese). |
[25] | (王琴, 薛珉敏, 张助华, 物理化学学报, 2019, 35, 565.) |
[26] | Zheng, B.; He, J.; Wang, Z.; Xie, Y.; Qian, Y.-Y.; Zhang, J.; Tang, Y.-N.; Cui, L.-Y.; Wu, Y.-M.; Yang, L.; Yu, H.-T. Appl. Surf. Sci. 2023, 612, 155842. |
[27] | Kistanov, A. A.; Cai, Y.; Zhou, K.; Srikanth, N.; Dmitriev, S. V.; Zhang, Y.-W. Nanoscale 2018, 10, 1403. |
[28] | Qian, Y.; Zheng, B.; Xie, Y.; He, J.; Chen, J.; Yang, L.; Lu, X.; Yu, H. Langmuir 2021, 37, 11027. |
[29] | Zheng, B.; Yu, H.; Xie, Y.; Lian, Y. ACS Appl. Mater. Inter. 2014, 6, 19690. |
[30] | Yi, T.; Zheng, B.; Yu, H.; Xie, Y. Chem. Res. Chin. Univ. 2017, 33, 631. |
[31] | Zheng, B.; Xie, Y.; Deng, Y.; Wang, Z.; Lou, Y.; Qian, Y.; He, J.; Yu, H. Adv. Theory Simul. 2020, 3, 1900249. |
[32] | Deng, Y.; Qian, Y.; Xie, Y.; Zhang, L.; Zheng, B.; Lou, Y.; Yu, H. Acta Chim. Sinica 2020, 78, 344 (in Chinese). |
[32] | (邓颖怡, 钱银银, 谢颖, 张磊, 郑冰, 娄原青, 于海涛, 化学学报, 2020, 78, 344.) |
[33] | Liu, X.; Li, Q.; Ruan, Q.; Rahn, M. S.; Yakobson, B. I.; Hersam, M. C. Nat. Mater. 2021, 21, 35. |
[34] | Chen, C.; Lv, H.; Zhang, P.; Zhuo, Z.; Wang, Y.; Ma, C.; Li, W.; Wang, X.; Feng, B.; Cheng, P.; Wu, X.; Wu, K.; Chen, L. Nature Chemistry 2022, 14, 25. |
[35] | Chhetri, P.; Ackermann, D.; Backe, H.; Block, M.; Cheal, B.; Droese, C.; Dullmann, C. E.; Even, J.; Ferrer, R.; Giacoppo, F.; Gotz, S.; Hessberger, F. P.; Huyse, M.; Kaleja, O.; Khuyagbaatar, J.; Kunz, P.; Laatiaoui, M.; Lautenschlager, F.; Lauth, W.; Lecesne, N.; Lens, L.; Minaya Ramirez, E.; Mistry, A. K.; Raeder, S.; Van Duppen, P.; Walther, T.; Yakushev, A.; Zhang, Z. Phys. Rev. Lett. 2018, 126, 263003. |
[36] | Saidi, W. A. Cryst. Growth Des. 2015, 15, 3190. |
[37] | Xu, S.-F.; Yuan, G.; Li, C.; Liu, W.-H.; Mimura, H. J. Phys. Chem. C 2011, 115, 8928. |
[38] | Galeev, T. R.; Chen, Q.; Guo, J.; Bai, H.; Miao, C.; Lu, H.; Sergeeva, A. P.; Li, S.; Boldyrev, A. I. Phys. Chem. Chem. Phys. 2011, 13, 11575. |
[39] | Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. |
[40] | Tkatchenko, A.; DiStasio, R. A., Jr.; Car, R.; Scheffler, M. Phys. Rev. Lett. 2012, 108, 236402. |
[41] | Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. |
[42] | Zhang, H.; Xu, Z. P.; Lu, G. Q.; Smith, S. C. J. Phys. Chem. C 2010, 114, 12618. |
[43] | Egger, D. A.; Liu, Z.-F.; Neaton, J. B.; Kronik, L. Nano Lett. 2015, 15, 2448. |
[44] | Zheng, B.; Yu, H. T.; Lian, Y. F.; Xie, Y. Chem. Phys. Lett. 2016, 648, 81. |
[45] | He, J.; Zheng, B.; Xie, Y.; Qian, Y. Y.; Zhang, J.; Wang, K.; Yang, L.; Yu, H. T. Phys. Chem. Chem. Phys. 2022, 24, 8923. |
[46] | Kaneti, Y. V.; Benu, D. P.; Xu, X.; Yuliarto, B.; Yamauchi, Y.; Golberg, D. Chem. Rev. 2022, 122, 1000. |
[47] | Tang, H.; Ismail-Beigi, S. Phys. Rev. Lett. 2007, 99, 115501. |
[48] | Banerjee, S.; Periyasamy, G.; Pati, S. K. J. Mater. Chem. A 2014, 2, 3856. |
[49] | Khanifaev, J.; Pekoz, R.; Konuk, M.; Durgun, E. Phys. Chem. Chem. Phys. 2017, 19, 28963. |
[50] | Zhang, H. ACS Nano 2015, 9, 9451. |
[51] | Bezugly, V.; Kunstmann, J.; Grundko?tter-Stock, B.; Frauenheim, T.; Niehaus, T.; Cuniberti, G. ACS Nano 2011, 5, 4997. |
[52] | Shan, B.; Cho, K. Phys. Rev. Lett. 2005, 94, 236602. |
[53] | Liu, F.; Shen, C.; Su, Z.; Ding, X.; Deng, S.; Chen, J.; Xu, N.; Gao, H. J. Mater. Chem. 2010, 20, 2197. |
[54] | Lin, H.; Shi, H.; Wang, Z.; Mu, Y.; Li, S.; Zhao, J.; Guo, J.; Yang, B.; Wu, Z.; Liu, F. ACS Nano 2021, 15, 17327. |
[55] | Ranjan, P.; Sahu, T. K.; Bhushan, R.; Yamijala, S. S. R. K. C.; Late, D. J.; Kumar, P.; Vinu, A. Adv. Mater. 2019, 31, 1900353. |
[56] | Li, H.; Jing, L.; Liu, W.; Lin, J.; Tay, R. Y.; Tsang, S. H.; Teo, E. H. T. ACS Nano 2018, 12, 1262. |
[57] | Chahal, S.; Ranjan, P.; Motlag, M.; Yamijala, S. S. R. K. C.; Late, D. J.; Sadki, E. H. S.; Cheng, G. J.; Kumar, P. Adv. Mater. 2021, 33, 2102039. |
[58] | Wu, X.; Dai, J.; Zhao, Y.; Zhuo, Z.; Yang, J.; Zeng, X. ACS Nano 2012, 6, 7443. |
[59] | Huang, J. H.; Fang, J. H.; Liu, C. C.; Chu, C. W. ACS Nano 2011, 5, 6262. |
/
〈 |
|
〉 |