新兴Janus颗粒在油水分离中的应用进展★
收稿日期: 2023-05-05
网络出版日期: 2023-07-04
基金资助
国家重点研发计划(2022YFA1206900); 国家重点研发计划(2019YFA0709300); 国家自然科学基金(22035008); 中国科学院重点研究计划(XDPB24); 中国科学院国际伙伴计划(1A1111KYSB20200010)
Application Progress of Emerging Janus Particles for Oil-Water Separation★
Received date: 2023-05-05
Online published: 2023-07-04
Supported by
The National Key R&D Program of China(2022YFA1206900); The National Key R&D Program of China(2019YFA0709300); National Natural Science Foundation of China(22035008); Key Research Program of the Chinese Academy of Sciences(XDPB24); International Partnership Program of Chinese Academy of Sciences(1A1111KYSB20200010)
Janus颗粒是具有各向异性表面化学性质的微纳米材料, 在乳液稳定、界面吸附和选择性润湿等方面展现出独特优势. Janus颗粒的高界面活性使其被广泛用于油水分离研究, 在环境保护等领域展示出广泛的应用前景. 在本展望中, 总结了近年来新兴Janus颗粒在制备、性质和油水分离应用中的研究进展, 重点讨论了Janus颗粒的不同制备策略及形貌对其界面性质的影响, 总结了颗粒在界面的排布方式, 并介绍了多种具有可逆、响应性质的Janus颗粒. 最后, 展望了Janus颗粒在油水分离中面临的挑战和未来发展方向, 如绿色合成、大规模制备、深入机理研究等问题和微油滴去除、原油处理、可控响应分离等方面的应用.
王端达 , 沈欣怡 , 宋永杨 , 王树涛 . 新兴Janus颗粒在油水分离中的应用进展★[J]. 化学学报, 2023 , 81(9) : 1187 -1195 . DOI: 10.6023/A23050204
Janus particles are micro-nano materials with anisotropic surface chemical properties, exhibiting unique advantages in emulsion stabilization, interfacial adsorption, and selective wetting. The high interfacial activity of Janus particles makes them widely used in oil-water separation research and shows broad application prospects in environmental protection and other fields. In this perspective, we summarize the research progress of emerging Janus particles in preparation, properties, and oil-water separation applications in recent years. We focus on discussing the influence of different preparation strategies and morphologies of Janus particles on their interfacial properties, summarize the mechanism of particle assembly and aggregation at interface, and introduce various Janus particles with reversible responsive properties. Finally, we prospect the challenges and future development directions of Janus particles in oil-water separation, such as green synthesis, large-scale preparation, in-depth mechanism research, and applications in aspects such as micro-oil droplet removal, crude oil treatment, and controllable responsive separation.
| [1] | Casagrande, C.; Fabre, P.; Raphael, E.; Veyssie, M. Europhys. Lett. 1989, 9, 251. |
| [2] | de Gennes, P. G. Rev. Mod. Phys. 1992, 64, 645. |
| [3] | Walther, A.; Mueller, A. H. E. Soft Matter 2008, 4, 663. |
| [4] | McConnell, M. D.; Kraeutler, M. J.; Yang, S.; Composto, R. J. Nano Lett. 2010, 10, 603. |
| [5] | Zarzar, L. D.; Sresht, V.; Sletten, E. M.; Kalow, J. A.; Blankschtein, D.; Swager, T. M. Nature 2015, 518, 520. |
| [6] | Zong, Y.; Liu, J.; Liu, R.; Guo, H.; Yang, M.; Li, Z.; Chen, K. ACS Nano 2015, 9, 10844. |
| [7] | Walther, A.; Hoffmann, M.; Mueller, A. H. E. Angew. Chem. Int. Ed. 2008, 47, 711. |
| [8] | Liang, F. X.; Liu, B.; Cao, Z.; Yang, Z. Z. Langmuir 2018, 34, 4123. |
| [9] | Chevalier, Y.; Bolzinger, M.-A. Colloids Surf. A Physicochem. Eng. Asp. 2013, 439, 23. |
| [10] | Boeker, A.; He, J.; Emrick, T.; Russell, T. P. Soft Matter 2007, 3, 1231. |
| [11] | He, X.; Liang, C.; Liu, Q. X.; Xu, Z. H. Chem. Eng. J. 2019, 378, 122045. |
| [12] | He, X.; Liu, Q. X.; Xu, Z. H. J. Colloid Interface Sci. 2020, 568, 207. |
| [13] | He, X.; Liu, Q. X.; Xu, Z. H. Chem. Eng. Sci. 2021, 230, 166215. |
| [14] | Yang, F.; He, X.; Tan, W.; Liu, G.; Yi, T. T.; Lu, Q. Y.; Wei, X. T.; Xie, H. J.; Long, Q. R.; Wang, G. C.; Guo, C. F.; Pensini, E.; Lu, Z. G.; Liu, Q. X.; Xu, Z. H. J. Colloid Interface Sci. 2022, 607, 1741. |
| [15] | Hou, Y.; Li, Y.; Wang, L.; Chen, D.; Bao, M.; Wang, Z. J. Colloid Interface Sci. 2019, 556, 54. |
| [16] | Wu, W. X.; Zhu, G. M.; Wang, B. F.; Qu, T.; Gao, M.; Zhu, Y. L.; Yan, J. Y.; Li, G. L.; Zhang, H. L.; Nie, L. H. J. Water Process Eng. 2022, 49, 103148. |
| [17] | Wu, H.; Yi, W.; Chen, Z.; Wang, H.; Du, Q. Carbon 2015, 93, 473. |
| [18] | Contreras Ortiz, S. N.; Cabanzo, R.; Mejia-Ospino, E. Fuel 2019, 240, 162. |
| [19] | Xu, Y. B.; Wang, Y. F.; Wang, T. Y.; Zhang, L. Y.; Xu, M. M.; Jia, H. Molecules 2022, 27, 2191. |
| [20] | Liang, F.; Shen, K.; Qu, X.; Zhang, C.; Wang, Q.; Li, J.; Liu, J.; Yang, Z. Angew. Chem. Int. Ed. 2011, 50, 2379. |
| [21] | Yu, H.; Zheng, Z.; Hu, B. T.; Ye, Z. F.; Zhu, X. M.; Zhao, Y. L.; Wang, H. T. J. Colloid Interface Sci. 2022, 606, 1554. |
| [22] | Hwang, Y. H.; Jeon, K.; Ryu, S. A.; Kim, D. P.; Lee, H. Small 2020, 16, 2005159. |
| [23] | Yao, X.; Jing, J.; Liang, F.; Yang, Z. Macromolecules 2016, 49, 9618. |
| [24] | Song, Y.; Zhou, J.; Fan, J.-B.; Zhai, W.; Meng, J.; Wang, S. Adv. Funct. Mater. 2018, 28, 1802493. |
| [25] | Qi, X.; Du, Y. X.; Zhang, Z. Q.; Zhang, X. Nanomaterials 2023, 13, 455. |
| [26] | Ali, N.; Zhang, B. L.; Zhang, H. P.; Li, W.; Zaman, W.; Tian, L.; Zhang, Q. Y. Fuel 2015, 141, 258. |
| [27] | Zaman, H.; Ali, N.; Shah, A. U. A.; Gao, X. Y.; Zhang, S. Z.; Hong, K.; Bilal, M. J. Mol. Liq. 2019, 290, 111186. |
| [28] | Liang, F. X.; Liu, J. G.; Zhang, C. L.; Qu, X. Z.; Li, J. L.; Yang, Z. Z. Chem. Commun. 2011, 47, 1231. |
| [29] | Chen, Y.; Yang, H. L.; Zhang, C. L.; Wang, Q.; Qu, X. Z.; Li, J. L.; Liang, F. X.; Yang, Z. Z. Macromolecules 2013, 46, 4126. |
| [30] | Zhao, L. L.; Zhu, L. J.; Chen, Y.; Wang, Q.; Li, J. L.; Zhang, C. L.; Liang, F. X.; Qu, X. Z.; Yang, Z. Z. Chem. Commun. 2013, 49, 6161. |
| [31] | Zhang, H.; Wang, Q.; Jiang, B. Y.; Liang, F. X.; Yang, Z. Z. ACS Appl. Mater. Interfaces 2016, 8, 33250. |
| [32] | Zhang, L. L.; Shi, S. Y.; Zhang, G. L.; Song, X. M.; Sun, D. Y.; Liang, F. X.; Yang, Z. Z. Chem. Commun. 2020, 56, 10497. |
| [33] | Thangavelu, K.; Aubry, C.; Zou, L. D. Ind. Eng. Chem. Res. 2021, 60, 1266. |
| [34] | Mou, F.; Pan, D.; Chen, C.; Gao, Y.; Xu, L.; Guan, J. Adv. Funct. Mater. 2015, 25, 6173. |
| [35] | Pan, D.; Mou, F. Z.; Li, X. F.; Deng, Z. Y.; Sun, J.; Xu, L. L.; Guan, J. G. J. Mater. Chem. A 2016, 4, 11768. |
| [36] | Bao, Y.; Chang, J. X.; Zhang, Y. X.; Chen, L. Chem. Eng. J. 2022, 446, 136959. |
| [37] | Zhao, R.; Han, T.; Sun, D.; Shan, D.; Liu, Z.; Liang, F. Acta Chim. Sinica 2020, 78, 954. (in Chinese) |
| [37] | (赵若彤, 韩天昊, 孙大吟, 山丹, 刘正平, 梁福鑫, 化学学报, 2020, 78, 954.) |
| [38] | Ren, M.; Guo, W. L.; Guo, H. S.; Ren, X. H. ACS Appl. Mater. Interfaces 2019, 11, 22761. |
| [39] | Pickering, S. U. J. Chem. Soc. 1907, 91, 2001. |
| [40] | Binks, B. P.; Lumsdon, S. O. Langmuir 2000, 16, 8622. |
| [41] | Binks, B. P. Curr. Opin. Colloid In. 2002, 7, 21. |
| [42] | Pieranski, P. Phys. Rev. Lett. 1980, 45, 569. |
| [43] | Binks, B. P.; Fletcher, P. D. I. Langmuir 2001, 17, 4708. |
| [44] | Ruhland, T. M.; Groeschel, A. H.; Ballard, N.; Skelhon, T. S.; Walther, A.; Mueller, A. H. E.; Bon, S. A. F. Langmuir 2013, 29, 1388. |
| [45] | Park, B. J.; Lee, D. ACS Nano 2012, 6, 782. |
| [46] | Tu, F. Q.; Lee, D. J. Am. Chem. Soc. 2014, 136, 9999. |
| [47] | Zhai, W.; Li, T.; He, Y.-F.; Xiong, Y.; Wang, R.-M. RSC Adv. 2015, 5, 76211. |
| [48] | Tanaka, T.; Okayama, M.; Minami, H.; Okubo, M. Langmuir 2010, 26, 11732. |
/
| 〈 |
|
〉 |