研究评论

原位刻蚀调控多级孔分子筛策略及其应用进展

  • 洪梅 ,
  • 高金强 ,
  • 李彤 ,
  • 杨世和
展开
  • 广东省纳米微米材料研究重点实验室 省部共建肿瘤化学基因组学国家重点实验室 北京大学深圳研究生院化学生物学与生物技术学院 深圳 518055

洪梅, 北京大学深圳研究生院副教授、广东省纳米微米材料研究重点实验室副主任. 2002年在南京大学获得硕士学位, 2007年在美国科罗拉多大学博尔德分校获得博士学位, 2007~2008年在美国加州大学戴维斯分校开展博士后研究, 2008~2013年在瑞士龙沙集团担任研发技术经理, 2014年起任北京大学博士生导师. 研究方向: (1)多孔纳米微米材料的设计与合成; (2)功能复合材料的关键技术; (3)分离、催化产品的开发和应用.

高金强, 北京大学深圳研究生院助理研究员. 2020年在日本新澙大学获得博士学位, 2020~2022年在北京大学深圳研究生院开展博士后研究, 2022年起任职于北京大学深圳研究生院和广东省纳米微米材料研究重点实验室. 研究方向: (1)膜分离, 及纳微结构调控与结晶理论; (2)电解水催化剂的设计和研究.

李彤, 北京大学深圳研究生院研究助理. 2022年起任职于北京大学深圳研究生院和广东省纳米微米材料研究重点实验室. 研究方向: 多孔纳米微米材料的合成与应用.

杨世和, 教育部长江讲座教授, 国家杰出青年(海外), 深圳市孔雀团队带头人, 现任北京大学深圳研究生院教授、香港科技大学兼职教授、广东省纳米微米材料研究重点实验室主任. 长期从事团簇和低维纳米材料的化学物理基础和应用研究. 近年来, 研究着重于发展和集成新型可持续材料以实现高效光电及化学转换. 已在国际权威期刊上发表论文690余篇, 被 SCI引用60000余次, H-index 128 (Google Scholar), 连续多年被评为科睿唯安(Clarivate Analytics)年度“全球Top1%高被引学者”, 担任多个国际期刊的编委或顾问, 曾两次获得国家自然科学二等奖, 授权国际国内发明专利数十项.

庆祝《化学学报》创刊90周年.

收稿日期: 2023-04-28

  网络出版日期: 2023-07-07

基金资助

项目受国家自然科学基金(21972006); 深圳市科技计划(JCYJ20200109140421071); 深圳市科技计划(JSGG20211029095546003)

In-situ Etching Strategy for Manipulation of Hierarchical Zeolite and Its Application

  • Mei Hong ,
  • Jinqiang Gao ,
  • Tong Li ,
  • Shihe Yang
Expand
  • Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology & Biotechnology, Peking University Shenzhen Graduate School (PKUSZ), Shenzhen 518055, China
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-28

  Online published: 2023-07-07

Supported by

National Natural Science Foundation of China(21972006); Shenzhen Science and Technology Program(JCYJ20200109140421071); Shenzhen Science and Technology Program(JSGG20211029095546003)

摘要

沸石分子筛是迄今为止应用最广泛, 对社会贡献最大的多孔材料. 多级孔沸石兼具扩散系数大和活性高的双重优势, 是理想的吸附和催化材料. 研究发现一类有机小分子致介孔剂如氨基酸、苯酚、氮唑等, 通过原位生成氧、氮或碳负离子起到亲核刻蚀作用, 一锅法产生沸石晶内介孔. 刻蚀调控作用于早期沸石前体, 可有效调控沸石结晶度、大小、形貌、多级孔和性能. 将温和有机小分子刻蚀剂原位加入沸石合成反应液中, 能够克服传统“自下而上”策略中介观模板必须煅烧和“自上而下”策略中沸石骨架结构易于破坏的问题. 利用早期沸石前体引入刻蚀与生长的平衡机制和协同作用, 可以有效调控沸石结晶度、大小、形貌、多级孔和性能. 本研究评论首先简要介绍了多级孔沸石制备的现有策略, 随后对原位刻蚀辅助生长策略进行了详细讨论, 包括原位刻蚀剂的选择、原位刻蚀辅助的沸石晶化过程机理和优势, 最后对原位刻蚀调控多级孔分子筛的应用进行了总结.

本文引用格式

洪梅 , 高金强 , 李彤 , 杨世和 . 原位刻蚀调控多级孔分子筛策略及其应用进展[J]. 化学学报, 2023 , 81(8) : 937 -948 . DOI: 10.6023/A23040177

Abstract

Zeolite molecular sieve is by far the most widely used porous material with the greatest contribution to society. Hierarchical zeolites, which possess dual advantages of large diffusion coefficient and high activity, are increasingly important as catalysts and adsorbents in many chemical processes. A class of organic mesoporogens named organic mesopore generating agents (OMeGAs), such as amino acids, phenols, and azoles were found to produce intracrystalline mesopores by one pot method, wherein the nucleophilic etching effect of the in-situ generated anions, including oxyanions, nitranions, or carbanions, plays the key role. By adding mild OMeGAs in-situ into the reaction solution of zeolite synthesis, the nucleophilic etching assisted growth could overcome the energy-intensive mesoscale template calcination associated with the “bottom-up” strategy and the zeolite structure destruction of the “top-down” post-synthetic strategy. The interplay between in-situ etching and growth on the early precursor or nuclei has enabled effective control over crystallinity, size, morphology, mesopores, and performance of zeolites. In this account, the existing preparation strategies of hierarchical zeolite are first briefly introduced. Then, the in-situ etching-assisted growth strategies are discussed in detail, including the selection of mild etchant OMeGAs, mechanism and advantages of the etching-assisted zeolite crystallization process. Finally, the application of in-situ etching-manipulated hierarchical zeolite is summarized.

参考文献

[1]
(a) Li Y.; Cao H.; Yu J. ACS Nano 2018, 12, 4096.
[1]
(b) Slater A. G.; Cooper A. I. Science 2015, 348, aaa8075.
[2]
Chen L.-H.; Sun M.-H.; Wang Z.; Yang W.; Xie Z.; Su B.-L. Chem. Rev. 2020, 120, 11194.
[3]
(a) Sun M.-H.; Huang S.-Z.; Chen L.-H.; Li Y.; Yang X.-Y.; Yuan Z.-Y.; Su B.-L. Chem. Soc. Rev. 2016, 45, 3479.
[3]
(b) Wang R.-S.; Peng P.; Li T.-T.; Du N.-N.; Wang Y.-H.; Yan Z.-F. Chemical Industry and Engineering Progress 2021, 40, 1849. (in Chinese)
[3]
( 王日升, 彭鹏, 李婷婷, 杜宁宁, 王有和, 阎子峰, 化工进展, 2021, 40, 1849.)
[4]
Kerstens D.; Smeyers B.; Van Waeyenberg J.; Zhang Q.; Yu J.; Sels B. F. Adv. Mater. 2020, 32, 2004690.
[5]
Li K. H.; Valla J.; Garcia-Martinez J. ChemCatChem 2014, 6, 46.
[6]
Tian Y.; Li Y.-D. Journal of Chemical Industry and Engineering, 2013, 64, 393. (in Chinese)
[6]
( 田野, 李永丹, 化工学报, 2013, 64, 393.)
[7]
Prasomsri T.; Jiao W.; Weng S. Z.; Garcia Martinez J. Chem. Commun. 2015, 51, 8900.
[8]
Wei Y.; Parmentier T. E.; de Jong K. P.; Zecevic J. Chem. Soc. Rev. 2015, 44, 7234.
[9]
Jacobsen C. J. H.; Madsen C.; Houzvicka J.; Schmidt I.; Carlsson A. J. Am. Chem. Soc. 2000, 122, 7116.
[10]
Schmidt I.; Boisen A.; Gustavsson E.; Stahl K.; Pehrson S.; Dahl S.; Carlsson A.; Jacobsen C. J. H. Chem. Mater. 2001, 13, 4416.
[11]
Janssen A. H.; Schmidt I.; Jacobsen C. J. H.; Koster A. J.; de Jong K. P. Micropor. Mesopor. Mater. 2003, 65, 59.
[12]
Tao Y. S.; Kanoh H.; Kaneko K. J. Am. Chem. Soc. 2003, 125, 6044.
[13]
Yang Z. X.; Xia Y. D.; Mokaya R. Adv. Mater. 2004, 16, 727.
[14]
Li D.; Qiu L.; Wang K.; Zeng Y.; Li D.; Williams T.; Huang Y.; Tsapatsis M.; Wang H. Chem. Commun. 2012, 48, 2249.
[15]
White R. J.; Fischer A.; Goebel C.; Thomas A. J. Am. Chem. Soc. 2014, 136, 2715.
[16]
Wang H.; Du G.; Jia J.; Chen S.; Su Z.; Chen R.; Chen T. Front. Chem. Sci. Eng. 2021, 15, 1444.
[17]
Li X.; Sun J.; Shao S.; Yan J.; Cai Y. Renew. Energy 2023, 206, 506.
[18]
Tao Y. S.; Kanoh H.; Kaneko K. Langmuir 2005, 21, 504.
[19]
Holland B. T.; Abrams L.; Stein A. J. Am. Chem. Soc. 1999, 121, 4308.
[20]
Tosheva L.; Valtchev V.; Sterte J. Micropor. Mesopor. Mater. 2000, 35-36, 621.
[21]
Lee Y. J.; Lee J. S.; Park Y. S.; Yoon K. B. Adv. Mater. 2001, 13, 1259.
[22]
Li W. C.; Lu A. H.; Palkovits R.; Schmidt W.; Spliethoff B.; Schuth F. J. Am. Chem. Soc. 2005, 127, 12595.
[23]
Wang H.; Pinnavaia T. J. Angew. Chem. Int. Ed. 2006, 45, 7603.
[24]
Xiao F. S.; Wang L. F.; Yin C. Y.; Lin K. F.; Di Y.; Li J. X.; Xu R. R.; Su D. S.; Schlogl R.; Yokoi T.; Tatsumi T. Angew. Chem. Int. Ed. 2006, 45, 3090.
[25]
Rhodes K. H.; Davis S. A.; Caruso F.; Zhang B. J.; Mann S. Chem. Mater. 2000, 12, 2832.
[26]
Sachse A.; García-Martínez J. Chem. Mater. 2017, 29, 3827.
[27]
Kresge C. T.; Leonowicz M. E.; Roth W. J.; Vartuli J. C.; Beck J. S. Nature 1992, 359, 710.
[28]
Huang L. M.; Guo W. P.; Deng P.; Xue Z. Y.; Li Q. Z. J. Phys. Chem. B 2000, 104, 2817.
[29]
Naik S. P.; Chiang A. S. T.; Thompson R. W.; Huang F. C.; Kao H.-M. Micropor. Mesopor. Mater. 2003, 60, 213.
[30]
Choi M.; Cho H. S.; Srivastava R.; Venkatesan C.; Choi D. H.; Ryoo R. Nat. Mater. 2006, 5, 718.
[31]
Na K.; Jo C.; Kim J.; Cho K.; Jung J.; Seo Y.; Messinger R. J.; Chmelka B. F.; Ryoo R. Science 2011, 333, 328.
[32]
Mendoza-Castro M. J.; Serrano E.; Linares N.; García-Martínez J. Adv. Mater. Interfaces 2021, 8, 2001388.
[33]
del Mar Alonso-Doncel M.; Ochoa-Hernández C.; Gómez-Pozuelo G.; Oliveira A.; González-Aguilar J.; Peral á.; Sanz R.; Serrano D. P. J. Energy Chem. 2023, 80, 77.
[34]
Zhu J.; Zhu Y. H.; Zhu L. K.; Rigutto M.; van der Made A.; Yang C. G.; Pan S. X.; Wang L.; Zhu L. F.; Jin Y. Y.; Sun Q.; Wu Q. M.; Meng X. J.; Zhang D. L.; Han Y.; Li J. X.; Chu Y. Y.; Zheng A. M.; Qiu S. L.; Zheng X. M.; Xiao F. S. J. Am. Chem. Soc. 2014, 136, 2503.
[35]
Valtchev V.; Majano G.; Mintova S.; Perez-Ramirez J. Chem. Soc. Rev. 2013, 42, 263.
[36]
Peron D. V.; Zholobenko V. L.; de Melo J. H. S.; Capron M.; Nuns N.; de Souza M. O.; Feris L. A.; Marcilio N. R.; Ordomsky V. V.; Khodakov A. Y. Micropor. Mesopor. Mater. 2019, 286, 57.
[37]
Barrer R. M.; Makki M. B. Can. J. Chem. 1964, 42, 1481.
[38]
Valtchev V.; Mintova S. MRS Bull. 2016, 41, 689.
[39]
Chal R.; Gerardin C.; Bulut M.; van Donk S. ChemCatChem 2011, 3, 67.
[40]
Verboekend D.; Nuttens N.; Locus R.; Van Aelst J.; Verolme P.; Groen J. C.; Perez-Ramirez J.; Sels B. F. Chem. Soc. Rev. 2016, 45, 3331.
[41]
van Donk S.; Janssen A. H.; Bitter J. H.; de Jong K. P. Catal. Rev. 2003, 45, 297.
[42]
Agostini G.; Lamberti C.; Palin L.; Milanesio M.; Danilina N.; Xu B.; Janousch M.; van Bokhoven J. A. J. Am. Chem. Soc. 2010, 132, 667.
[43]
Hua Z. L.; Zhou J.; Shi J. L. Chem. Commun. 2011, 47, 10536.
[44]
Groen J. C.; Jansen J. C.; Moulijn J. A.; Perez-Ramirez J. J. Phys. Chem. B 2004, 108, 13062.
[45]
Verboekend D.; Perez-Ramirez J. Catal. Sci. Technol. 2011, 1, 879.
[46]
Garcia-Martinez J.; Li K.; Krishnaiah G. Chem. Commun. 2012, 48, 11841.
[47]
Yang G.; Qiu Z.; Han J.; Chen X.; Yu J. Mater. Chem. Front. 2020, 4, 2982.
[48]
Bozhilov K. N.; Le T. T.; Qin Z.; Terlier T.; Pal?i? A.; Rimer J. D.; Valtchev V. Sci. Adv. 2021, 7, eabg0454.
[49]
Kencana K. S.; Choi H. J.; Kemp K. C.; Hong S. B. Chem. Eng. J. 2023, 451, 138520.
[50]
Zheng Y.; Zeng J.; Ruditskiy A.; Liu M.; Xia Y. Chem. Mater. 2014, 26, 22.
[51]
Lin L.; Chen M.; Qin H.; Peng X. J. Am. Chem. Soc. 2018, 140, 17734.
[52]
Xi D. Y.; Sun Q. M.; Xu J.; Cho M.; Cho H. S.; Asahina S.; Li Y.; Deng F.; Terasaki O.; Yu J. H. J. Mater. Chem. A 2014, 2, 17994.
[53]
Ge T.; Hua Z.; He X.; Zhu Y.; Ren W.; Chen L.; Zhang L.; Chen H.; Lin C.; Yao H.; Shi J. Chinese J. Catal. 2015, 36, 866.
[54]
Chen C.; Zhai D.; Dong L.; Wang Y.; Zhang J.; Liu Y.; Chen Z.; Wang Y.; Qian W.; Hong M. Chem. Mater. 2019, 31, 1528.
[55]
Zhang J.; Chen Z.; Wang Y.; Zheng G.; Zheng H.; Cai F.; Hong M. Micropor. Mesopor. Mater. 2017, 252, 79.
[56]
Zhang J.; Bai S.; Chen Z.; Wang Y.; Dong L.; Zheng H.; Cai F.; Hong M. J. Mater. Chem. A 2017, 5, 20757.
[57]
Dong L.; Hong M.; Wang Y.; Wang Y.; Miao K.; Gao J.; Jia Q.; Yang S. Adv. Mater. Interfaces 2021, 8, 2101573.
[58]
Wang Y.; Gao J.; Dong L.; Wang Y.; Hong M.; Yang S. Micropor. Mesopor. Mater. 2021, 310, 110590.
[59]
Zhao J.; Dong L.; Wang Y.; Zhang J.; Zhu R.; Li C.; Hong M. Nanoscale 2022, 14, 5915.
[60]
Chen Z.; Zhang J.; Yu B.; Zheng G.; Zhao J.; Hong M. J. Mater. Chem. A 2016, 4, 2305.
[61]
Chen Y.; Dong L.; Li S.; Gao J.; Liu X.; Yuan H.; Zhu R.; Hong M.; Yang S. Appl. Surf. Sci. 2023, 625, 157172.
[62]
Wang C.; Zhang L.; Huang X.; Zhu Y.; Li G.; Gu Q.; Chen J.; Ma L.; Li X.; He Q.; Xu J.; Sun Q.; Song C.; Peng M.; Sun J.; Ma D. Nat. Commun. 2019, 10, 4348.
[63]
Dong L.; Zhai D.; Chen Z.; Zheng G.; Wang Y.; Hong M.; Yang S. Chem. Commun. 2020, 56, 14693.
[64]
Lupulescu A. I.; Rimer J. D. Science 2014, 344, 729.
[65]
(a) Huang Z.; Li S.; Xu B.; Yan F.; Yuan G.; Liu H. Small 2020, 2006624.
[65]
(b) Wu J.; Gao W.; Yang H.; Zuo J.-M. ACS Nano 2017, 11, 1696.
[65]
(c) Dong G.-X.; Jin C.-H. Acta Physico-Chimica Sinica 2019, 35, 15. (in Chinese)
[65]
( 董干兴, 金传洪, 物理化学学报, 2019, 35, 15.)
[66]
Bu?ar D.-K.; Lancaster R. W.; Bernstein J. Angew. Chem. Int. Ed. 2015, 54, 6972.
[67]
Marui Y.; Matsuoka M. J. Chem. Eng. Japan 2004, 37, 685.
[68]
Valtchev V. P.; Bozhilov K. N. J. Phys. Chem. B 2004, 108, 15587.
[69]
Chen Z.; Chen C.; Zhang J.; Zheng G.; Wang Y.; Dong L.; Qian W.; Bai S.; Hong M. J. Mater. Chem. A 2018, 6, 6273.
[70]
Hong M.; Yu L.; Wang Y.; Zhang J.; Chen Z.; Dong L.; Zan Q.; Li R. Chem. Eng. J. 2019, 359, 363.
[71]
Hong M.; Dong L.; Yang S. ChemNanoMat 2019, 5, 869.
[72]
Rimer J. D. Nat. Catal. 2018, 1, 488.
[73]
Olafson K. N.; Li R.; Alamani B. G.; Rimer J. D. Chem. Mater. 2016, 28, 8453.
[74]
Farmanesh S.; Chung J.; Sosa R. D.; Kwak J. H.; Karande P.; Rimer J. D. J. Am. Chem. Soc. 2014, 136, 12648.
文章导航

/