收稿日期: 2023-05-22
网络出版日期: 2023-07-07
基金资助
国家自然科学基金项目(22225504); 国家自然科学基金项目(21975115); 深圳市基础研究计划项目(JCYJ20200109140801751); 深圳市基础研究计划项目(JCYJ20210324120010028); 广东省催化重点实验室(2020B121201002)
Chlorine-Mediated Organic Photovoltaic Materials★
Received date: 2023-05-22
Online published: 2023-07-07
Supported by
National Natural Science Foundation of China(22225504); National Natural Science Foundation of China(21975115); Shenzhen Fundamental Research Program(JCYJ20200109140801751); Shenzhen Fundamental Research Program(JCYJ20210324120010028); Guangdong Provincial Key Laboratory of Catalysis(2020B121201002)
材料的合理设计对提高有机太阳能电池(OSCs)的能量转换效率(PCE)起着至关重要的作用. 近年来有机太阳能电池在给受体材料的研究上取得了巨大成功, 为能量转换效率快速增长做出了巨大贡献. 目前其最高能量转换效率已经超过19%, 显示出它们在实际应用中的巨大潜力. 利用氯介导策略调控给受体材料性能被证明是一种有效的方法, 具有重要的应用意义. 通过努力, 在不断取得的进展和积累的成果上, 逐渐形成了“氯介导有机光伏材料体系”. 此研究展望简要介绍了近年来利用氯介导策略发展的系列具有代表性的氯介导聚合物给体和非富勒烯受体材料体系; 强调了氯原子在调控材料能级、分子间堆积、活性层薄膜形貌等方面的能力及其对器件光伏性能的重要影响, 探究了其内在机理. 此外, 还讨论了未来在开发新型氯介导有机光伏材料时应考虑的一些关键问题, 如转换效率、成本和稳定性.
蒲明瑞 , 何凤 . 氯介导有机光伏材料★[J]. 化学学报, 2023 , 81(11) : 1541 -1550 . DOI: 10.6023/A23050245
The reasonable design of materials plays a crucial role in improving the power conversion efficiency (PCE) of organic solar cells (OSCs). In recent years, OSCs have achieved great success in the research of donor and acceptor materials, making a significant contribution to the rapid growth of efficiency. Currently, their maximum efficiency is over 19%, demonstrating their great potential in practical applications. Chlorine-mediated strategy is proved to be an effective method to regulate the properties of the donor and acceptor materials and has important application significance. Through efforts, our research group has gradually formed a “Chlorine-Mediated Organic Photovoltaic Materials System” based on the continuous progress and accumulated achievements. In this perspective, the development of a series of representative chlorine-mediated polymer donor and non-fullerene acceptor materials using chlorine-mediated strategies in recent years are briefly introduced. The ability of chlorine atoms to regulate material energy levels, intermolecular stacking, active layer film morphology, and their important effects on the photovoltaic performance of devices were emphasized, and their intrinsic mechanisms were explored. In addition, some key issues such as efficiency, cost, and stability that should be considered when developing next generation chlorine-mediated organic photovoltaic materials in the future are also discussed.
[1] | Zhang G.; Lin F. R.; Qi F.; Heumüller T.; Distler A.; Egelhaaf H.-J.; Li N.; Chow P. C. Y.; Brabec C. J.; Jen A. K. Y.; Yip H.-L. Chem. Rev. 2022, 122, 14180. |
[2] | Yao H.; Hou J. Angew. Chem. Int. Ed. 2022, 61, e202209021. |
[3] | Cheng P.; Li G.; Zhan X.; Yang Y. Nat. Photonics 2018, 12, 131. |
[4] | Bi P.; Zhang S.; Wang J.; Ren J.; Hou J. Chin. J. Chem. 2021, 39, 2607. |
[5] | Xu X.; Yu L.; Peng Q. Chin. J. Chem. 2021, 39, 243. |
[6] | Li T.; Zhan X. Acta Chim. Sinica 2021, 79, 257. |
[7] | Zhang M.; Guo X.; Ma W.; Ade H.; Hou J. Adv. Mater. 2015, 27, 4655. |
[8] | Tang M. L.; Bao Z. Chem. Mater. 2011, 23, 446. |
[9] | Tang M. L.; Oh J. H.; Reichardt A. D.; Bao Z. J. Am. Chem. Soc. 2009, 131, 3733. |
[10] | Li Y.; Meng B.; Tong H.; Xie Z.; Wang L. Polym. Chem. 2014, 5, 1848. |
[11] | Zheng Y.-Q.; Wang Z.; Dou J.-H.; Zhang S.-D.; Luo X.-Y.; Yao Z.-F.; Wang J.-Y.; Pei J. Macromolecules 2015, 48, 5570. |
[12] | Sun S.-X.; Huo Y.; Li M.-M.; Hu X.; Zhang H.-J.; Zhang Y.-W.; Zhang Y.-D.; Chen X.-L.; Shi Z.-F.; Gong X.; Chen Y.; Zhang H.-L. ACS Appl. Mater. Interfaces 2015, 7, 19914. |
[13] | Zhao Q.; Qu J.; He F. Adv. Sci. 2020, 7, 2000509. |
[14] | Lai H.; Lai X.; Chen Z.-Y.; Zhu Y.; Wang H.; Chen H.; Tan P.; Zhu Y.; Zhang Y.; He F. CCS Chem. 2022, 3, ccschem.022.202201875. |
[15] | Chao P.; Mu Z.; Wang H.; Mo D.; Chen H.; Meng H.; Chen W.; He F. ACS Appl. Energy Mater. 2018, 1, 2365. |
[16] | Zhang S.; Qin Y.; Zhu J.; Hou J. Adv. Mater. 2018, 30, 1800868. |
[17] | Zhao T.; Wang H.; Pu M.; Lai H.; Chen H.; Zhu Y.; Zheng N.; He F. Chin. J. Chem. 2021, 39, 1651. |
[18] | Chao P.; Chen H.; Zhu Y.; Zheng N.; Meng H.; He F. Macromolecules 2020, 53, 165 |
[19] | Chao P.; Liu L.; Zhou J.; Qu J.; Mo D.; Meng H.; Xie Z.; He F.; Ma Y. ACS Appl. Energy Mater. 2018, 1, 6549. |
[20] | Chen H.; Hu Z.; Wang H.; Liu L.; Chao P.; Qu J.; Chen W.; Liu A.; He F. Joule 2018, 2, 1623. |
[21] | Qu S.; Wang H.; Mo D.; Chao P.; Yang Z.; Li L.; Tian L.; Chen W.; He F. Macromolecules 2017, 50, 4962. |
[22] | Wang H.; Chao P.; Chen H.; Mu Z.; Chen W.; He F. ACS Energy Lett. 2017, 2, 1971. |
[23] | Hu Z.; Chen H.; Qu J.; Zhong X.; Chao P.; Xie M.; Lu W.; Liu A.; Tian L.; Su Y.-A.; Chen W.; He F. ACS Energy Lett. 2017, 2, 753. |
[24] | Mo D.; Wang H.; Chen H.; Qu S.; Chao P.; Yang Z.; Tian L.; Su Y.-A.; Gao Y.; Yang B.; Chen W.; He F. Chem. Mater. 2017, 29, 2819. |
[25] | Chao P.; Chen H.; Zhu Y.; Lai H.; Mo D.; Zheng N.; Chang X.; Meng H.; He F. Adv. Mater. 2020, 32, e1907059. |
[26] | Chao P.; Chen H.; Pu M.; Zhu Y.; Han L.; Zheng N.; Zhou J.; Chang X.; Mo D.; Xie Z.; Meng H.; He F. Adv. Sci. 2021, 8, 2003641. |
[27] | Pu M.; Cao C.; Chen H.; Zhu Y.; Tan P.; Lai X.; He F. Chem. Eng. J. 2022, 437, 135198. |
[28] | Qu J.; Chen H.; Zhou J.; Lai H.; Liu T.; Chao P.; Li D.; Xie Z.; He F.; Ma Y. ACS Appl. Mater. Interfaces 2018, 10, 39992. |
[29] | Lai H.; Chen H.; Zhou J.; Qu J.; Chao P.; Liu T.; Chang X.; Zheng N.; Xie Z.; He F. iScience 2019, 17, 302. |
[30] | Qu J.; Zhao Q.; Zhou J.; Lai H.; Liu T.; Li D.; Chen W.; Xie Z.; He F. Chem. Mater. 2019, 31, 1664. |
[31] | Mo D.; Chen H.; Zhou J.; Tang N.; Han L.; Zhu Y.; Chao P.; Lai H.; Xie Z.; He F. J. Mater. Chem. A 2020, 8, 8903. |
[32] | Chen H.; Zhao T.; Li L.; Tan P.; Lai H.; Zhu Y.; Lai X.; Han L.; Zheng N.; Guo L.; He F. Adv. Mater. 2021, 33, 2102778. |
[33] | Zhu L.; Zhang M.; Xu J.; Li C.; Yan J.; Zhou G.; Zhong W.; Hao T.; Song J.; Xue X.; Zhou Z.; Zeng R.; Zhu H.; Chen C.-C.; MacKenzie R. C. I.; Zou Y.; Nelson J.; Zhang Y.; Sun Y.; Liu F. Nat. Mater. 2022, 21, 656. |
[34] | Wang J.; Wang Y.; Bi P.; Chen Z.; Qiao J.; Li J.; Wang W.; Zheng Z.; Zhang S.; Hao X.; Hou J. Adv. Mater. 2023, 35, 2301583. |
[35] | Kong X.; Zhang J.; Meng L.; Sun C.; Jiang X.; Zhang J.; Zhu C.; Sun G.; Li J.; Li X.; Wei Z.; Li Y. CCS Chem. 2023, DOI: 10.31635/ccschem.023.202302720. |
[36] | Li S.; Zhan L.; Li Y.; He C.; Zuo L.; Shi M.; Chen H. Small Methods 2022, 6, 2200828. |
[37] | Wang H.; Cao C.; Chen H.; Lai H.; Ke C.; Zhu Y.; Li H.; He F. Angew. Chem., Int. Ed. 2022, 61, e202201844. |
[38] | Cao C.; Wang H.; Qiu D.; Zhao T.; Zhu Y.; Lai X.; Pu M.; Li Y.; Li H.; Chen H.; He F. Adv. Funct. Mater. 2022, 32, 2201828. |
/
〈 |
|
〉 |