综述

窄谱带多重共振有机高分子荧光材料研究进展

  • 王一诺 ,
  • 邵世洋 ,
  • 王利祥
展开
  • a 中国科学院长春应用化学研究所 长春 130022
    b 中国科学技术大学应用化学与工程学院 合肥 230026
    c 海南大学材料科学与工程学院 海口 570228

王一诺, 中国科学院长春应用化学研究所(中国科学技术大学应用化学与工程学院)在读博士研究生. 主要研究方向为有机光电功能材料的合成化学与OLED性能研究.

邵世洋, 海南大学材料科学与工程学院教授, 博士研究生导师. 2006年本科毕业于武汉大学. 2012年毕业于中国科学院长春应用化学研究所, 获博士学位. 2012至2022年于中国科学院长春应用化学研究所担任助理研究员/副研究员, 2022年加入海南大学工作. 获中国科学院优秀博士学位论文(2013), 入选中国科学院青年创新促进会会员(2015), 获中国科学院青年创新促进会优秀会员(2019)和国家自然科学基金优秀青年科学基金资助(2021). 主要从事有机高分子发光材料的合成化学与性能研究.

王利祥, 中国科学院长春应用化学研究所研究员, 博士研究生导师. 1984年本科毕业于黑龙江大学. 1989年博士毕业于中国科学院长春应用化学研究所. 1994年至1997年依次担任德国马普高分子研究所 “洪堡”学者、美国麻省大学Amherst分校高分子科学与工程系担任访问学者. 1993年至今, 任职于中国科学院长春应用化学研究所. 国家杰出青年基金获得者(1997年), 科技部973项目首席科学家, 中组部万人计划科技创新领军人才. 获国家自然科学奖二等奖1项(2009年)、吉林省科学技术进步一等奖2项(2007和2012年). 发表学术论文380 余篇, 获权中国发明专利50项, 美国发明专利1项. 目前担任中国化学会有机固体专业委员会副主任委员、《Chin. J. Polym. Sci.》和《化学学报》副主编、《高分子学报》《应用化学》和《化学进展》编委. 长期从事光电功能高分子的合成化学与性能研究.

庆祝《化学学报》创刊90周年.

收稿日期: 2023-04-29

  网络出版日期: 2023-07-07

基金资助

国家自然科学基金(52122309); 52073282和51833009(52073282); 52073282和51833009(51833009); 国家自然科学基金委员会与俄罗斯科学基金会合作研究项目(52261135541); 中科院-裘搓基金会联合实验室资助计划和海南大学科研基金(KYQD(ZR)22174)

Recent Advances in Multiple Resonance Organic/Polymer Fluorescent Materials with Narrowband Emission

  • Yinuo Wang ,
  • Shiyang Shao ,
  • Lixiang Wang
Expand
  • a Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
    b School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei 230026
    c School of Materials Sciences and Engineering, Hainan University, Haikou 570228
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-29

  Online published: 2023-07-07

Supported by

The National Natural Science Foundation of China(52122309); The National Natural Science Foundation of China(52073282); The National Natural Science Foundation of China(51833009); The Joint Project between National Natural Science Foundation of China and Russian Science Foundation(52261135541); The CAS-Croucher Funding Scheme for Joint Laboratories, and the Start-up Scientific Research Foundation from Hainan University(KYQD(ZR)22174)

摘要

多重共振(Multiple Resonance, MR)结构荧光材料是由芳香稠环骨架以及嵌于骨架中的富电子原子和缺电子原子形成的分子内推拉电子体系, 由于激发态结构弛豫被刚性分子骨架所抑制而具有窄谱带发光的突出特征, 自报道以来引起国内外学者的广泛关注, 相继开发出高效率、高色纯度的蓝光、绿光和红光材料体系, 成为发展有机高分子荧光材料的重要研究方向. 本文从材料和器件角度, 综述了近年来窄谱带多重共振有机高分子荧光材料的研究进展, 围绕硼/氮共振结构、硼/氧(硫)共振结构、羰基/氮共振结构和吲哚并咔唑共振结构等主要材料体系, 总结和评述了元素组成、分子骨架和取代基修饰等因素对其发光特性及器件性能的影响规律, 同时分析和展望了多重共振有机高分子荧光材料未来发展面临的机遇和挑战.

本文引用格式

王一诺 , 邵世洋 , 王利祥 . 窄谱带多重共振有机高分子荧光材料研究进展[J]. 化学学报, 2023 , 81(9) : 1202 -1214 . DOI: 10.6023/A23040186

Abstract

Multiple resonance (MR) emitters can be considered as intramolecular push-pull electronic systems formed by embedding electron-deficient atoms and electron-rich atoms in polycyclic aromatic skeleton. Since the structural relaxation of excited state is suppressed by the rigid molecular skeleton, multiple resonance emitters exhibit the prominent feature of narrowband emission, which enables them to attract wide attention of researchers since its report. Up to now blue, green and red multiple resonance emitters with both high device efficiency and high color purity were developed, making them become an important research direction for organic/polymeric fluorescent materials. In this review, recent advances in narrowband multiple resonance emitters are summarized from the perspective of materials and devices, with focus on B/N-, B/O(S)-, C=O/N-containing and indolocarbazole-based multiple resonance emitters. The effects of elements composition, molecular framework and substituents on their luminescent characteristics and device performances are summarized. Meanwhile, opportunities and challenges for future development of multiple resonance emitters are analyzed and prospected.

参考文献

[1]
Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J. M.; Brase, S. Adv. Mater. 2021, 33, e2005630.
[2]
Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
[3]
Burroughes, J.; Bradley, D.; Brown, A.; Marks, R.; Mackay, K.; Friend, R.; Burns, P.; Holmes, A. Nature 1990, 347, 539.
[4]
Wang, Y.; Han, M.; Huang, D.; Liu, X.; Hou, L. Imaging Sci. Photochem. 2021, 39, 1. (in Chinese)
[4]
(王亚丽, 韩美英, 黄达, 刘贤豪, 侯丽新, 影像科学与光化学, 2021, 39, 1.)
[5]
Jankus, V.; Data, P.; Graves, D.; McGuinness, C.; Santos, J.; Bryce, M. R.; Dias, F. B.; Monkman, A. P. Adv. Funct. Mater. 2014, 24, 6178.
[6]
Baldo, M.; O'Brien, D.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.; Forrest, S. Nature 1998, 395, 151.
[7]
Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J. Adv. Mater. 2011, 23, 926.
[8]
Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
[9]
Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.
[10]
Im, Y.; Kim, M.; Cho, Y. J.; Seo, J.-A.; Yook, K. S.; Lee, J. Y. Chem. Mater. 2017, 29, 1946.
[11]
Wong, M. Y.; Zysman-Colman, E. Adv. Mater. 2017, 29, 1605444.
[12]
Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Chem. Soc. Rev. 2017, 46, 915.
[13]
Cai, X.; Su, S.-J. Adv. Funct. Mater. 2018, 28, 1802558.
[14]
Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R. Nat. Rev. Mater. 2018, 3, 18020.
[15]
Nakanotani, H.; Tsuchiya, Y.; Adachi, C. Chem. Lett. 2021, 50, 938.
[16]
Madayanad, S. M.; Hall, D.; Beljonne, D.; Olivier, Y.; Zysman‐Colman, E. Adv. Funct. Mater. 2020, 30, 1908677.
[17]
Kothavale, S. S.; Lee, J. Y. Adv. Opt. Mater. 2020, 8, 2000922.
[18]
Teng, J.-M.; Wang, Y.-F.; Chen, C.-F. J. Mater. Chem. C 2020, 8, 11340.
[19]
Ha, J. M.; Hur, S. H.; Pathak, A.; Jeong, J.-E.; Woo, H. Y. NPG Asia Mater. 2021, 13, 53.
[20]
Han, J.; Chen, Y.; Li, N.; Huang, Z.; Yang, C. Aggregate 2022, 3, e182.
[21]
Kim, H. J.; Yasuda, T. Adv. Opt. Mater. 2022, 10, 2201714.
[22]
Ma, P.; Han, C.; Xu, H. J. Eng. Heilongjiang Univ. 2021, 12, 63. (in Chinese)
[22]
(马鹏, 韩春苗, 许辉, 黑龙江大学工程学报, 2021, 12, 63.)
[23]
Ji, L.; Griesbeck, S.; Marder, T. B. Chem. Sci. 2017, 8, 846.
[24]
Grotthuss, E.; John, A.; Kaese, T.; Wagner, M. Asian J. Org. Chem. 2018, 7, 37.
[25]
Li, D.; Zhang, H.; Wang, Y. Chem. Soc. Rev. 2013, 42, 8416.
[26]
Yang, M.; Park, I. S.; Yasuda, T. J. Am. Chem. Soc. 2020, 142, 19468.
[27]
Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Adv. Mater. 2016, 28, 2777.
[28]
Xu, Y.; Cheng, Z.; Li, Z.; Liang, B.; Wang, J.; Wei, J.; Zhang, Z.; Wang, Y. Adv. Opt. Mater. 2020, 8, 1902142.
[29]
Zhang, Y.; Zhang, D.; Wei, J.; Liu, Z.; Lu, Y.; Duan, L. Angew. Chem., Int. Ed. 2019, 58, 16912.
[30]
Yang, M.; Shikita, S.; Min, H.; Park, I. S.; Shibata, H.; Amanokura, N.; Yasuda, T. Angew. Chem., Int. Ed. 2021, 60, 23142.
[31]
Matsui, K.; Oda, S.; Yoshiura, K.; Nakajima, K.; Yasuda, N.; Hatakeyama, T. J. Am. Chem. Soc. 2018, 140, 1195.
[32]
Oda, S.; Kumano, W.; Hama, T.; Kawasumi, R.; Yoshiura, K.; Hatakeyama, T. Angew. Chem., Int. Ed. 2021, 60, 2882.
[33]
Wang, Y.; Di, K.; Duan, Y.; Guo, R.; Lian, L.; Zhang, W.; Wang, L. Chem. Eng. J. 2022, 431, 133221.
[34]
Kondo, Y.; Yoshiura, K.; Kitera, S.; Nishi, H.; Oda, S.; Gotoh, H.; Sasada, Y.; Yanai, M.; Hatakeyama, T. Nat. Photonics 2019, 13, 678.
[35]
Park, J.; Lim, J.; Lee, J. H.; Jang, B.; Han, J. H.; Yoon, S. S.; Lee, J. Y. ACS Appl. Mater. Interfaces 2021, 13, 45798.
[36]
Nagata, M.; Min, H.; Watanabe, E.; Fukumoto, H.; Mizuhata, Y.; Tokitoh, N.; Agou, T.; Yasuda, T. Angew. Chem., Int. Ed. 2021, 60, 20280.
[37]
Hua, T.; Miao, J.; Xia, H.; Huang, Z.; Cao, X.; Li, N.; Yang, C. Adv. Funct. Mater. 2022, 32, 2201032.
[38]
Li, Q.; Wu, Y.; Wang, X.; Yang, Q.; Hu, J.; Zhong, R.; Shao, S.; Wang, L. Chem. Eur. J. 2022, 28, e202104214.
[39]
Park, I. S.; Min, H.; Yasuda, T. Angew. Chem., Int. Ed. 2022, 61, e202205684.
[40]
Li, Q.; Wu, Y.; Yang, Q.; Wang, S.; Shao, S.; Wang, L. ACS Appl. Mater. Interfaces 2022, 14, 49995.
[41]
Xu, Y.; Li, C.; Li, Z.; Wang, J.; Xue, J.; Wang, Q.; Cai, X.; Wang, Y. CCS Chem. 2022, 4, 2065.
[42]
Xu, Y.; Li, C.; Li, Z.; Wang, Q.; Cai, X.; Wei, J.; Wang, Y. Angew. Chem., Int. Ed. 2020, 59, 17442.
[43]
Zhang, Y.; Zhang, D.; Wei, J.; Hong, X.; Lu, Y.; Hu, D.; Li, G.; Liu, Z.; Chen, Y.; Duan, L. Angew. Chem., Int. Ed. 2020, 59, 17499.
[44]
Zhang, Y.; Li, G.; Wang, L.; Huang, T.; Wei, J.; Meng, G.; Wang, X.; Zeng, X.; Zhang, D.; Duan, L. Angew. Chem., Int. Ed. 2022, 61, e202202380.
[45]
Xu, Y.; Wang, Q.; Wei, J.; Peng, X.; Xue, J.; Wang, Z.; Su, S. J.; Wang, Y. Angew. Chem., Int. Ed. 2022, 61, e202204652.
[46]
Jiang, P.; Zhan, L.; Cao, X.; Lv, X.; Gong, S.; Chen, Z.; Zhou, C.; Huang, Z.; Ni, F.; Zou, Y.; Yang, C. Adv. Opt. Mater. 2021, 9, 2100825.
[47]
Uemura, S.; Oda, S.; Hayakawa, M.; Kawasumi, R.; Ikeda, N.; Lee, Y.-T.; Chan, C.-Y.; Tsuchiya, Y.; Adachi, C.; Hatakeyama, T. J. Am. Chem. Soc. 2022, 145, 1505.
[48]
Ikeda, N.; Oda, S.; Matsumoto, R.; Yoshioka, M.; Fukushima, D.; Yoshiura, K.; Yasuda, N.; Hatakeyama, T. Adv. Mater. 2020, 32, e2004072.
[49]
Cai, X.; Xue, J.; Li, C.; Liang, B.; Ying, A.; Tan, Y.; Gong, S.; Wang, Y. Angew. Chem., Int. Ed. 2022, 61, e202200337.
[50]
Liu, F.; Cheng, Z.; Jiang, Y.; Gao, L.; Liu, H.; Liu, H.; Feng, Z.; Lu, P.; Yang, W. Angew. Chem., Int. Ed. 2022, 61, e202116927.
[51]
Cao, X.; Pan, K.; Miao, J.; Lv, X.; Huang, Z.; Ni, F.; Yin, X.; Wei, Y.; Yang, C. J. Am. Chem. Soc. 2022, 144, 22976.
[52]
Meng, G.; Dai, H.; Huang, T.; Wei, J.; Zhou, J.; Li, X.; Wang, X.; Hong, X.; Yin, C.; Zeng, X.; Zhang, Y.; Yang, D.; Ma, D.; Li, G.; Zhang, D.; Duan, L. Angew. Chem., Int. Ed. 2022, 61, e202207293.
[53]
Qi, Y.; Ning, W.; Zou, Y.; Cao, X.; Gong, S.; Yang, C. Adv. Funct. Mater. 2021, 31, 2102017.
[54]
Luo, X. F.; Ni, H. X.; Lv, A. Q.; Yao, X. K.; Ma, H. L.; Zheng, Y. X. Adv. Opt. Mater. 2022, 10, 2200504.
[55]
Liu, Y.; Xiao, X.; Ran, Y.; Bin, Z.; You, J. Chem. Sci. 2021, 12, 9408.
[56]
Zhang, Y.; Wei, J.; Wang, L.; Huang, T.; Meng, G.; Wang, X.; Zeng, X.; Du, M.; Fan, T.; Yin, C.; Zhang, D.; Duan, L. Adv. Mater. 2023, 35, e2209396.
[57]
Zhang, Y.; Zhang, D.; Huang, T.; Gillett, A. J.; Liu, Y.; Hu, D.; Cui, L.; Bin, Z.; Li, G.; Wei, J.; Duan, L. Angew. Chem., Int. Ed. 2021, 60, 20498.
[58]
Wang, Y.; Zhang, K.; Chen, F.; Wang, X.; Yang, Q.; Wang, S.; Shao, S.; Wang, L. Chin. J. Chem. 2022, 40, 2671.
[59]
Zou, Y.; Hu, J.; Yu, M.; Miao, J.; Xie, Z.; Qiu, Y.; Cao, X.; Yang, C. Adv. Mater. 2022, 34, e2201442.
[60]
Hirai, H.; Nakajima, K.; Nakatsuka, S.; Shiren, K.; Ni, J.; Nomura, S.; Ikuta, T.; Hatakeyama, T. Angew. Chem., Int. Ed. 2015, 54, 13581.
[61]
Kitamoto, Y.; Suzuki, K.; Miyata, Y.; Kita, H.; Funaki, K.; Oi, S. Chem. Commun. 2016, 52, 7098.
[62]
Chen, F.; Zhao, L.; Wang, X.; Yang, Q.; Li, W.; Tian, H.; Shao, S.; Wang, L.; Jing, X.; Wang, F. Sci. China: Chem. 2021, 64, 547.
[63]
Chang, Y.; Wu, Y.; Wang, X.; Li, W.; Yang, Q.; Wang, S.; Shao, S.; Wang, L. Chem. Eng. J. 2023, 451, 138545.
[64]
Yuan, Y.; Tang, X.; Du, X. Y.; Hu, Y.; Yu, Y. J.; Jiang, Z. Q.; Liao, L. S.; Lee, S. T. Adv. Opt. Mater. 2019, 7, 1801536.
[65]
Zou, S. N.; Peng, C. C.; Yang, S. Y.; Qu, Y. K.; Yu, Y. J.; Chen, X.; Jiang, Z. Q.; Liao, L. S. Org. Lett. 2021, 23, 958.
[66]
Huang, F.; Wang, K.; Shi, Y. Z.; Fan, X. C.; Zhang, X.; Yu, J.; Lee, C. S.; Zhang, X. H. ACS Appl. Mater. Interfaces 2021, 13, 36089.
[67]
Sun, D.; Suresh, S. M.; Hall, D.; Zhang, M.; Si, C.; Cordes, D. B.; Slawin, A. M. Z.; Olivier, Y.; Zhang, X.; Zysman-Colman, E. Mater. Chem. Front. 2020, 4, 2018.
[68]
Min, H.; Park, I. S.; Yasuda, T. Angew. Chem., Int. Ed. 2021, 60, 7643.
[69]
Wu, S.; Kumar Gupta, A.; Yoshida, K.; Gong, J.; Hall, D.; Cordes, D. B.; Slawin, A. M. Z.; Samuel, I. D. W.; Zysman-Colman, E. Angew. Chem., Int. Ed. 2022, 61, e202213697.
[70]
Fan, X. C.; Wang, K.; Shi, Y. Z.; Chen, J. X.; Huang, F.; Wang, H.; Hu, Y. N.; Tsuchiya, Y.; Ou, X. M.; Yu, J.; Adachi, C.; Zhang, X. H. Adv. Opt. Mater. 2022, 10, 2101789.
[71]
Lee, H. L.; Chung, W. J.; Lee, J. Y. Small 2020, 16, e1907569.
[72]
Patil, V. V.; Lee, H. L.; Kim, I.; Lee, K. H.; Chung, W. J.; Kim, J.; Park, S.; Choi, H.; Son, W. J.; Jeon, S. O.; Lee, J. Y. Adv. Sci. 2021, 8, 2101137.
[73]
Lee, H.; Jeon, S.; Kim, I.; Kim, S.; Lim, J.; Kim, J.; Park, S.; Chwae, J.; Son, W.; Choi, H.; Lee, J. Adv. Mater. 2022, 34, 2202464.
[74]
Zeng, X.; Wang, X.; Zhang, Y.; Meng, G.; Wei, J.; Liu, Z.; Jia, X.; Li, G.; Duan, L.; Zhang, D. Angew. Chem., Int. Ed. 2022, 61, 202117181.
[75]
Lee, S. Y.; Yasuda, T.; Komiyama, H.; Lee, J.; Adachi, C. Adv. Mater. 2016, 28, 4019.
[76]
Ren, Z.; Nobuyasu, R. S.; Dias, F. B.; Monkman, A. P.; Yan, S.; Bryce, M. R. Macromolecules 2016, 49, 5452.
[77]
Xie, G.; Luo, J.; Huang, M.; Chen, T.; Wu, K.; Gong, S.; Yang, C. Adv. Mater. 2017, 29, 1604223.
[78]
Wang, T.; Zou, Y.; Huang, Z.; Li, N.; Miao, J.; Yang, C. Angew. Chem., Int. Ed. 2022, 61, 202211172.
[79]
Hu, Y.; Miao, J.; Zhong, C.; Zeng, Y.; Gong, S.; Cao, X.; Zhou, X.; Gu, Y.; Yang, C. Angew. Chem., Int. Ed. 2023, 62, e202302478.
[80]
Liu, T.; Cheng, C.; Lou, W.; Deng, C.; Liu, J.; Wang, D.; Tsuboi, T.; Zhang, Q. J. Mater. Chem. C 2022, 10, 7799.
文章导航

/