综述

模块化双功能有机硼氮和硼磷催化体系的设计及其催化转化

  • 杨贯文 ,
  • 伍广朋
展开
  • 浙江大学高分子科学与工程学系 杭州 310058

杨贯文, 博士, 浙江大学高分子系副研究员. 本科毕业于济南大学; 硕士毕业于大连理工大学徐铁齐教授课题组; 博士毕业于浙江大学, 导师为伍广朋教授. 在浙江大学化学流动站完成博士后研究后, 加入浙江大学高分子系开展可降解高分子材料的无金属化合成方面的学术研究.

伍广朋, 浙江大学求是特聘教授, 国家杰出青年基金获得者, 教育部青年长江学者. 本科毕业于山东轻工业学院(齐鲁工业大学), 博士毕业于大连理工大学, 师从吕小兵教授; 之后在美国得州农工大学、芝加哥大学经历两站博士后研究, 2015年9月加入浙江大学高分子系, 目前主要开展高分子合成化学、可降解高分子材料、光刻胶等方面的研究.

庆祝《化学学报》创刊90周年.

收稿日期: 2023-05-05

  网络出版日期: 2023-07-21

基金资助

国家自然科学基金(22101253); 国家杰出青年科学基金(T2225004)

Modular Bifunctional Organoboron-ammonium/phosphonium Catalysts: Design and Catalytic Performance

  • Guan-Wen Yang ,
  • Guang-Peng Wu
Expand
  • Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-05-05

  Online published: 2023-07-21

Supported by

National Natural Science Foundation of China(22101253); National Science Fund for Distinguished Young Scholars(T2225004)

摘要

有机硼化合物是近年来广泛研究的一类非金属催化剂, 其在环氧烷烃参与的开环均聚合和共聚合方面展现了良好的适用性, 但二元亲电亲核双组分催化体系在加入大量的反应单体后由于稀释效应带来的熵不利因素往往导致活性减小或失活的问题, 同时也难以制备大分子量的聚合物材料. 基于此, 本文主要综述了本课题组设计的分子内同时含有亲电和亲核中心的双功能有机硼-季铵盐和有机硼-季鏻盐催化体系的研究进展, 重点梳理了此类双功能有机硼催化剂的设计脉络和设计原则, 对比了双功能和双组分有机硼催化体系之间的聚合反应机理, 总结了利用双功能有机硼催化剂在环氧烷烃开环聚合制备脂肪族聚醚、环氧烷烃和二氧化碳共聚合制备二氧化碳基聚碳酸酯、环氧烷烃和环状酸酐共聚合制备聚酯等方面的内容, 展望了有机硼催化剂在高分子合成化学方向的未来和趋势.

本文引用格式

杨贯文 , 伍广朋 . 模块化双功能有机硼氮和硼磷催化体系的设计及其催化转化[J]. 化学学报, 2023 , 81(11) : 1551 -1565 . DOI: 10.6023/A23050206

Abstract

Organoboron compounds are a class of non-metallic catalysts that have been extensively studied in recent years and have shown excellent applicability for ring-opening homopolymerization of epoxides and copolymerization of epoxides with other comonomers. However, the binary electrophile/nucleophile catalytic systems often have reduced activity or be deactivated due to the entropic disadvantage under dilute conditions, and it is also difficult to afford polymer materials with high molecular weight. This paper reviews the progress of bifunctional organoboron-quaternary ammonium/phosphonium salt catalytic systems containing both electrophilic and nucleophilic centers in one molecule that was designed by our group, focuses on the design concepts and principles of such bifunctional organoboron catalysts, compares the polymerization mechanisms between bifunctional and binary organoboron catalytic systems, and summarizes the use of bifunctional organoboron catalysts in the ring-opening polymerization of epoxides to prepare aliphatic polyethers, the copolymerization of epoxides and carbon dioxide/cyclic anhydride to prepare polycarbonates/polyesters. The future and trend of organoboron catalysts in polymer chemistry were prospected.

参考文献

[1]
MacMillan D. W. Nature 2008, 455, 304.
[2]
Han B.; He X. H.; Liu Y. Q.; He G.; Peng C.; Li J. L. Chem. Soc. Rev. 2021, 50, 1522.
[3]
Ooi T.; Crudden C. Acs Catal. 2021, 11, 15234.
[4]
Kiesewetter M. K.; Shin E. J.; Hedrick J. L.; Waymouth R. M. Macromolecules 2010, 43, 2093.
[5]
Hu S.; Zhao J.; Zhang G.; Schlaad H. Prog. Polym. Sci. 2017, 74, 34.
[6]
Bossion A.; Heifferon K. V.; Meabe L.; Zivic N.; Taton D.; Hedrick J. L.; Long T. E.; Sardon H. Prog. Polym. Sci. 2019, 90, 164.
[7]
Takeda N.; Inoue S. Macromol. Chem. Phys. 1978, 179, 1377
[8]
Cokoja M.; Bruckmeier C.; Rieger B.; Herrmann W. A.; Kuhn F. E. Angew. Chem., Int. Ed. 2011, 50, 8510.
[9]
Coates G. W.; Moore D. R. Angew. Chem., Int. Ed. 2004, 43, 6618.
[10]
Darensbourg D. J. Chem. Rev. 2007, 107, 2388.
[11]
Lu X.-B.; Darensbourg D. J. Chem. Soc. Rev. 2012, 41, 1462.
[12]
Klaus S.; Lehenmeier M. W.; Anderson C. E.; Rieger B. Coord. Chem. Rev. 2011, 255, 1460.
[13]
Nakano K.; Kamada T.; Nozaki K. Angew. Chem., Int. Ed. 2006, 45, 7274.
[14]
Lidston C. A. L.; Severson S. M.; Abel B. A.; Coates G. W. ACS Catal. 2022, 12, 11037.
[15]
Lu X. B.; Ren B. H. Chin. J. Polym. Sci. 2022, 40, 1331.
[16]
Ren W.-M.; Liu Z.-W.; Wen Y.-Q.; Zhang R.; Lu X.-B. J. Am. Chem. Soc. 2009, 131, 11509.
[17]
Wu G.-P.; Wei S.-H.; Lu X.-B.; Ren W.-M.; Darensbourg D. J. Macromolecules 2010, 43, 9202.
[18]
Wu G.-P.; Wei S.-H.; Ren W.-M.; Lu X.-B.; Xu T.-Q.; Darensbourg D. J. J. Am. Chem. Soc. 2011, 133, 15191.
[19]
Zhang D.; Boopathi S. K.; Hadjichristidis N.; Gnanou Y.; Feng X. J. Am. Chem. Soc. 2016, 138, 11117.
[20]
Zhang D.-D.; Feng X.; Gnanou Y.; Huang K.-W. Macromolecules 2018, 51, 5600.
[21]
Naumann S. Poly. Chem. 2023, 14, 1834.
[22]
Chen Y.; Liu S.; Zhao J-P. Acta Polymerica Sinica 2020, 51, 1067.
[22]
( 陈烨, 刘珊, 赵俊鹏. 高分子学报, 2020, 51, 1067.)
[23]
Wu G.-P.; Yang G.-W.; Zhang, Y.-Y. 2018, ZL201811107527.9.
[24]
Wu G.-P.; Yang G.-W.; Zhang, Y.-Y. 2020, ZL202010018753.0.
[25]
Yang G.-W.; Zhang, Y.-Y.; Wu, G.-P. WO2020057356.
[26]
Yang G. W.; Zhang Y. Y.; Wu G. P. Acc. Chem. Res. 2021, 54, 4434.
[27]
Yang G.-W.; Zhang Y.-Y.; Xie R.; Wu G.-P. J. Am. Chem. Soc. 2020, 142, 12245.
[28]
Xie R.; Zhang Y. Y.; Yang G. W.; Zhu X. F.; Li B.; Wu G. P. Angew. Chem., Int. Ed. 2021, 60, 19253.
[29]
Rieth L. R.; Moore D. R.; Lobkovsky E. B.; Coates G. W. J. Am. Chem. Soc. 2002, 124, 15239.
[30]
Amgoune A.; Thomas C. M.; Ilinca S.; Roisnel T.; Carpentier J. F. Angew. Chem., Int. Ed. 2006, 45, 2782.
[31]
Ligny R.; Hanninen M. M.; Guillaume S. M.; Carpentier J. F. Angew. Chem., Int. Ed. 2017, 56, 10388.
[32]
Lohmeijer B. G. G.; Pratt R. C.; Leibfarth F.; Logan J. W.; Long D. A.; Dove A. P.; Nederberg F.; Choi J.; Wade C.; Waymouth R. M.; Hedrick J. L. Macromolecules 2006, 39, 8574.
[33]
Macdonald E. K.; Shaver M. P. Eur. Polym. J. 2017, 95, 702.
[34]
Yang L.; Zhang Y.-Y.; Yang G.-W.; Xie R.; Wu G.-P. Macromolecules 2021, 54, 5509.
[35]
Brulé E.; Guérineau V.; Vermaut P.; Prima F.; Balogh J.; Maron L.; Slawin A. M. Z.; Nolan S. P.; Thomas C. M. Polym. Chem. 2013, 4, 2414.
[36]
Qi H.; Xie R.; Yang G.-W.; Zhang Y.-Y.; Xu C.-K.; Wang Y.; Wu G.-P. Macromolecules 2022, 55, 9081.
[37]
Chen C.; Gnanou Y.; Feng X. S. Polym. Chem. 2022, 13, 6312.
[38]
Herzberger J.; Niederer K.; Pohlit H.; Seiwert J.; Worm M.; Wurm F. R.; Frey H. Chem. Rev. 2016, 116, 2170.
[39]
Steiner E. C. P., R. R.; Trucks R. O. A J. Am. Chem. Soc. 1964, 86, 4678.
[40]
Raghuraman A.; Babb D.; Miller M.; Paradkar M.; Smith B.; Nguyen A. Macromolecules 2016, 49, 6790.
[41]
Imbrogno J.; Ferrier R. C.; Wheatle B. K.; Rose M. J.; Lynd N. A. ACS Catal. 2018, 8, 8796.
[42]
Chakraborty D.; Rodriguez A.; Chen E. Y. X. Macromolecules 2003, 36, 5470.
[43]
E?wein B.; Steidl N. M.; M?ller M. Macromol. Rapid Comm. 1996, 17, 143.
[44]
Chen Y.; Shen J.; Liu S.; Zhao J.; Wang Y.; Zhang G. Macromolecules 2018, 51, 8286.
[45]
Raynaud J.; Ottou W. N.; Gnanou Y.; Taton D. Chem. Comm. 2010, 46, 3203.
[46]
Braune W.; Okuda J. Angew. Chem., Int. Ed. 2003, 42, 64.
[47]
Thomas R. M.; Widger P. C. B.; Ahmed S. M.; Jeske R. C.; Hirahata W.; Lobkovsky E. B.; Coates G. W. J. Am. Chem. Soc. 2010, 132, 16520.
[48]
Morris L. S.; Childers M. I.; Coates G. W. Angew. Chem., Int. Ed. 2018, 57, 5731.
[49]
Yang G.-W.; Zhang Y.-Y.; Xie R.; Wu G.-P. Angew. Chem., Int. Ed. 2020, 59, 16910.
[50]
Bickelhaupt F. M.; Houk K. N. Angew. Chem., Int. Ed. 2017, 56, 10070.
[51]
Zhang Y. Y.; Yang G. W.; Xie R.; Yang L.; Li B.; Wu G. P. Angew. Chem., Int. Ed. 2020, 59, 23291.
[52]
Yang G.-W.; Xu C.-K.; Xie R.; Zhang Y.-Y.; Lu C.; Qi H.; Yang L.; Wang Y.; Wu G.-P. Nat. Synth. 2022, 1, 892.
[53]
Jung M. E.; Piizzi G. Chem. Rev. 2005, 105, 1735.
[54]
Yang G. W.; Wang Y.; Qi H.; Zhang Y. Y.; Zhu X. F.; Lu C.; Yang L.; Wu G. P. Angew. Chem., Int. Ed. 2022, 61, e202210243.
[55]
Inoue S.; Koinuma H.; Tsuruta T. J. Polym. Sci., Part B: Polym. Lett. 1969, 7, 287.
[56]
Shen Z.-Q.; Chen X.-H.; Zhang Y.-F. Macromol. Chem. Phys. 1994, 195, 2003.
[57]
Wei R.-J.; Zhang X.-H.; Du B.-Y.; Fan Z.-Q.; Qi G.-R. Polymer 2013, 54, 6357.
[58]
Sudakar P.; Sivanesan D.; Yoon S. Macromol. Rapid. Comm. 2016, 37, 788.
[59]
Yang G.-W.; Xu C.-K.; Xie R.; Zhang Y.-Y.; Zhu X.-F.; Wu G.-P. J. Am. Chem. Soc. 2021, 143, 3455.
[60]
Tong Y.; Cheng R.; Dong H.; Liu Z.; Ye J.; Liu, B. J. CO2 Util. 2022, 60, 101979.
[61]
Chen C.; Gnanou Y.; Feng X. Macromolecules 2023, 56, 3, 892.
[62]
Chen C.; Gnanou Y.; Feng X. Macromolecules 2022, 55, 10662.
[63]
Caputo C. B. H., L. J.; Dobrovetsky R.; Stephan D. W. Science 2013, 341, 1374.
[64]
Li H.; Liu H.; Guo H. Adv. Synth. Catal. 2021, 363, 2023.
[65]
Zhang Y.-Y.; Lu C.; Yang G.-W.; Xie R.; Fang Y.-B.; Wang Y.; Wu G.-P. Macromolecules 2022, 55, 6443.
[66]
Hui J.; Wang X.; Yao X.; Li Z. Polym. Chem. 2022, 13, 6551.
[67]
Wang X.-W.; Hui J.-W.; Li Y.-T.; Gu Y.-R.; Li Z.-B. Chin. J. Polym. Sci. 2023, 41, 735.
[68]
Sengoden M.; Bhat G. A.; Darensbourg D. J. RSC Adv. 2022, 12, 32440.
[69]
Schaefer J.; Zhou H.; Lee E.; Lambic N. S.; Culcu G.; Holtcamp M. W.; Rix F. C.; Lin T.-P. ACS Catal. 2022, 12, 11870.
[70]
Wang X.; Hui J.; Shi M.; Kou X.; Li X.; Zhong R.; Li Z. ACS Catal. 2022, 12, 8434.
[71]
Liu Y.; Ren W.-M.; Liu J.; Lu X.-B. Angew. Chem., Int. Ed. 2013, 52, 11594.
[72]
Li J.; Ren B.-H.; Wan Z.-Q.; Chen S.-Y.; Liu Y.; Ren W.-M.; Lu X.-B. J. Am. Chem. Soc. 2019, 141, 8937.
[73]
Liu Y.; Lu X.-B. Chem. - Eur. J. 2023, 29, e202203635.
文章导航

/