金属性Ni3N纳米粒子的制备与乙二醇电氧化性能★
收稿日期: 2023-05-05
网络出版日期: 2023-08-15
基金资助
大学生创新创业训练计划(S202210487007); 国家自然科学基金(22071069)
Preparation of Metallic Ni3N Nanoparticles and Its Electrooxidation Performance for Ethylene Glycol★
Received date: 2023-05-05
Online published: 2023-08-15
Supported by
College Student Innovation and Entrepreneurship Training Program(S202210487007); National Natural Science Foundation of China(22071069)
利用小分子电催化氧化反应耦合水解制氢不仅有助于降低阳极反应过电位, 提高析氢反应(HER)效率, 而且产生高附加值的化学品, 是提升电催化水分解性能的有效策略. 其关键是开发具有高导电性和低氧化电位的非贵金属电催化剂. 以Ni(OH)2纳米片为前驱物, 通过退火氮化工艺, 制备了具有低氧化电位和高导电性的金属相Ni3N纳米颗粒(Ni3N-NPs). 与Ni(OH)2相比, Ni3N-NPs具有较小的法拉第电阻, 更低的氧化电位(1.36 V时达到10 mA•cm–2), 较小的Tafel斜率(29 mV•dec–1), 表现出更好的乙二醇(EG)电催化氧化性能. 在1.36 V时, Ni3N-NPs电催化氧化EG生成甲酸盐的法拉第效率高达91.16%. 通过X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)对反应前后Ni3N-NPs结构进行详细表征发现, 在电催化 EG 氧化过程中, Ni3N-NPs表面被氧化生成NiOOH, 同时EG在催化剂表面发生脱H氧化生成甲酸, H同步还原NiOOH并将其转化为Ni(OH)2. 此外, Ni3N-NPs对有机小分子电催化氧化具有良好的普适性.
杨镇鸿 , 干晓娟 , 王书哲 , 段君元 , 翟天佑 , 刘友文 . 金属性Ni3N纳米粒子的制备与乙二醇电氧化性能★[J]. 化学学报, 2023 , 81(11) : 1471 -1477 . DOI: 10.6023/A23050202
Coupled small molecule electrocatalytic oxidation reaction can not only reduce anode overpotential, improve hydrogen evolution reaction (HER) efficiency, but also produce high value-added chemicals, which is an effective strategy to improve the performance of electrocatalytic water splitting. The development of non-noble metal based electrocatalysts with high conductivity and low oxidation potential is the key issue. Herein, Ni3N nanoparticles (Ni3N-NPs) with low oxidation potential and high conductivity were prepared by annealing and nitriding Ni(OH)2 nanosheets precursors. Compared with Ni(OH)2, Ni3N-NPs has a smaller Faraday resistance, a lower oxidation potential, a smaller Tafel slope (29 mV•dec–1), and exhibits the better electrocatalytic oxidation performance towards ethylene glycol (EG). At 1.36 V, the Faraday efficiency of electrocatalytic EG oxidation to formate reached 91.16%. The structure of Ni3N-NPs before and after the electrocatalytic oxidation reaction was characterized in detail by X-ray diffractometer (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). It was found that in the electrocatalytic EG oxidation process, the surface of Ni3N-NPs was oxidized into NiOOH, while EG underwent dehydrogenation and oxidation to form formic acid on the catalyst surface, and the NiOOH was synchronously reduced by H and converted into Ni(OH)2. In addition, Ni3N-NPs has good universality for electrocatalytic oxidation of small organic molecules.
Key words: electrocatalysis; water splitting; ethylene glycol; Ni(OH)2; Ni3N
| [1] | Chatenet M.; Pollet B. G.; Dekel D. R.; Dionigi F.; Deseure J.; Millet P.; Braatz R. D.; Bazant M. Z.; Eikerling M.; Staffell I.; Balcombe P.; Shao-Horn Y.; Schafer H. Chem. Soc. Rev. 2022, 51, 4583. |
| [2] | Zhan F.; Mebrahtu C.; Liao L. F.; Palkovits R.; Beine A. K. J. Energy Chem. 2022, 69, 301. |
| [3] | Jiao Y.; Zheng Y.; Jaroniec M.; Qiao S. Z. Chem. Soc. Rev. 2015, 44, 2060. |
| [4] | Li R.; Xiang K.; Peng Z. K.; Zou Y. Q.; Wang S. Y. Adv. Energy Mater. 2021, 11, 2102292. |
| [5] | Wang W. B.; Wen Q. L.; Liu Y. W.; Zhai T. Y. Acta Chim. Sinica 2020, 78, 1185. (in Chinese) |
| [5] | ( 王文彬, 温群磊, 刘友文, 翟天佑, 化学学报, 2020, 78, 1185.) |
| [6] | Wang Z. H.; Ma C.; Fang P.; Xu H. C.; Mei T. S. Acta Chim. Sinica 2022, 80, 1115. (in Chinese) |
| [6] | ( 王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115.) |
| [7] | Wang W. B.; Zhu Y. B.; Wen Q. L.; Wang Y. T.; Xia J.; Li C. C.; Chen M. W.; Liu Y. W.; Li H. Q.; Wu H. A.; Zhai T. Y. Adv. Mater. 2019, 31, 1900582. |
| [8] | Si D.; Xiang B. Y.; Chen L. S.; Shi J. L. Chem Catal. 2021, 1, 941. |
| [9] | Wu K. H.; Zhou Y. W.; Ma X. Y.; Ding C.; Cai W. B. Acta Chim. Sinica 2018, 76, 292. (in Chinese) |
| [9] | ( 吴匡衡, 周亚威, 马宪印, 丁辰, 蔡文斌, 化学学报, 2018, 76, 292.) |
| [10] | Xin L.; Zhang Z. Y.; Qi J.; Chadderdon D.; Li W. Z. Appl. Catal. B Environ. 2012, 125, 85. |
| [11] | Zhang N. N.; Zou Y. Q.; Tao L.; Chen W.; Zhou L.; Liu Z. J.; Zhou B.; Huang G.; Lin H. Z.; Wang S. Y. Angew. Chem., Int. Ed. 2019, 58, 15895. |
| [12] | Xu Z. H.; Rao L. X.; Song H. Y.; Yan Z. X.; Zhang L. J.; Yang S. B. Chin. J. Catal. 2017, 38, 305. |
| [13] | Chen Z. D.; Chen Z. X.; Tang J. L.; Xu J.; Wang W. C.; Cao J. Y. Acta Chim. Sinica 2012, 70, 241. (in Chinese) |
| [13] | ( 陈智栋, 陈转霞, 汤佳丽, 许娟, 王文昌, 曹剑瑜, 化学学报, 2012, 70, 241.) |
| [14] | Qin Y. C.; Zhang W. L.; Wang F. Q.; Li J. J.; Ye J. Y.; Sheng X.; Li C. X.; Liang X. Y.; Liu P.; Wang X. P.; Zheng X.; Ren Y. L.; Xu C. L.; Zhang Z. C. Angew. Chem., Int. Ed. 2022, 134, e202200899. |
| [15] | Yan H.; Yao S.; Wang J. Y.; Zhao S. M.; Sun Y. H.; Liu M. Y.; Zhou X.; Zhang G. Y.; Jin X.; Feng X.; Liu Y. B.; Chen X. B.; Chen D.; Yang C. H. Appl. Catal., B 2021, 284, 119803. |
| [16] | Wang W. B.; Wang Y. T.; Yang R. O.; Wen Q. L.; Liu Y. W.; Jiang Z.; Li H. Q.; Zhai T. Y. Angew. Chem., Int. Ed. 2020, 59, 16974. |
| [17] | Wen Q. L.; Lin Y.; Yang Y.; Gao R. J.; Ouyang N. Q.; Ding D. F.; Liu Y. W.; Zhai T. Y. ACS Nano 2022, 16, 9572. |
| [18] | Wen Q. L.; Wang S. Z.; Wang R. W.; Huang D. J.; Fang J. K.; Liu Y. W.; Zhai T. Y. Nano Res. 2023, 16, 2286. |
| [19] | Yong W. L.; Yang X. P.; Hou C. M.; Li B. J.; Gao H. T.; Lin J. H.; Luo X. L. Appl. Catal., B 2019, 259, 118020. |
/
| 〈 |
|
〉 |