基于机器学习势函数的熔盐体系分子动力学研究进展
收稿日期: 2023-07-11
网络出版日期: 2023-08-28
基金资助
国家杰出青年科学基金(21925603)
Advances in Molecular Dynamics Studies of Molten Salts Based on Machine Learning
Received date: 2023-07-11
Online published: 2023-08-28
Supported by
National Science Fund for Distinguished Young Scholars(21925603)
熔盐是一类具有重要应用价值的熔融态材料, 然而其微观结构与宏观性质之间的关系尚未完全探明, 因此开展针对熔盐体系的分子动力学研究具有重要意义. 针对高温熔盐体系的分子动力学研究以往主要依赖于传统分子动力学中力场的开发和第一性原理分子动力学的发展. 近年来得益于机器学习和神经网络的加速发展, 针对熔盐体系的机器学习势函数的开发工作取得了显著进展, 其在探索熔盐配位化学和预测物理性质方面表现优异. 本文首先梳理了熔盐领域内常用的分子动力学方法, 重点介绍了机器学习势函数的发展现状; 然后总结了机器学习势函数在熔盐研究方面的应用进展; 最后展望了机器学习势函数在该领域的应用前景, 并对可能存在的问题给出了建议.
韩逸之 , 蓝建慧 , 刘学 , 石伟群 . 基于机器学习势函数的熔盐体系分子动力学研究进展[J]. 化学学报, 2023 , 81(11) : 1663 -1672 . DOI: 10.6023/A23070328
Molten salt is a kind of molten material with important application value. However, the relationship between microstructure and macroscopic properties of molten salt has not been fully investigated, so it is of great significance to carry out extensive molecular dynamics studies. For high-temperature molten salts, molecular dynamics studies mainly relied on the development of force fields in classical molecular dynamics and first principles molecular dynamics previously. Due to the accelerated development of machine learning and neural networks, the potential for molten salts based on machine learning has been developed recently, and great progress has been made in exploring the coordination chemistry and accurately predicting physical properties. Herein, the latest research progress of molecular dynamics related to molten salt was firstly reviewed, especially the development status of machine learning potential. Secondly, the application progress of machine learning potentials in the research of molten salt was summarized. Finally, the research prospect of machine learning potentials for molten salt was discussed, and some suggestions were given.
| [1] | Abu-Khader M. M. Prog. Nucl. Energ. 2009, 51, 225. |
| [2] | Chen G. Z.; Fray D. J.; Farthing T. W. J. N. Nature 2000, 407, 361. |
| [3] | Wang K.; Jiang K.; Chung B.; Ouchi T.; Burke P. J.; Boysen D. A.; Bradwell D. J.; Kim H.; Muecke U.; Sadoway D. R. Nature 2014, 514, 348. |
| [4] | Zhong Y. K.; Liu Y. L.; Liu K.; Wang L.; Mei L.; Gibson J. K.; Chen J. Z.; Jiang S. L.; Liu Y. C.; Yuan L. Y.; Chai Z. F.; Shi W. Q. Nat. Commun. 2021, 12, 5777. |
| [5] | alanne M.; Simon C.; Turq P.; Ohtori N.; Madden P. A. In Molten Salts Chemistry, Vol. 1, Eds.: Lantelme, F.; Groult, H., Elsevier, Amsterdam, 2013, pp. 1-16. |
| [6] | Zhang X.; Zhang L.; Bo T.; Huang S.; Huang Z.; Shi W. Chin. Chem. Lett. 2022, 33, 3527. |
| [7] | Jiang S.; Lan J.; Wang L.; Liu Y.; Zhong Y.; Liu Y.; Yuan L. L.; Zheng L.; Chai Z.; Shi W. Chem.-Eur. J. 2021, 27, 11721. |
| [8] | Jiang S.; Liu Y.; Wang L.; Chai Z.; Shi W. Q. Chem.-Eur. J. 2022, 28, e202201145. |
| [9] | Liu Y.-L.; Lan J.-H.; Wang L.; Jiang S.-L.; Liu Y.-C.; Zhong Y.-K.; Yang D.-W.; Zhang L.; Shi W.-Q. Electrochim. Acta 2022, 404, 139573. |
| [10] | Kwon C.; Kang J.; Kang W.; Kwak D.; Han B. Electrochim. Acta 2016, 195, 216. |
| [11] | Worth G. A.; Cederbaum L. S. Annu. Rev. Phys. Chem. 2004, 55, 127. |
| [12] | Kresse G.; Furthmüller J. Phys. Rev. B 1996, 54, 11169. |
| [13] | Tse J. S. Annu. Rev. Phys. Chem. 2002, 53, 249. |
| [14] | Monticelli L.; Tieleman D. P. Methods Mol. Biol. 2013, 924, 197. |
| [15] | Perdew J. P.; Burke K.; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865. |
| [16] | Huggins M. L.; Mayer J. E. J. Chem. Phys. 1933, 1, 643. |
| [17] | Salanne M.; Rotenberg B.; Jahn S.; Vuilleumier R.; Simon C.; Madden P. A. Theor. Chem. Acc. 2012, 131, 1. |
| [18] | Dewan L. C.; Simon C.; Madden P. A.; Hobbs L. W.; Salanne M. J. Nucl. Mater. 2013, 434, 322. |
| [19] | Emerson M. S.; Sharma S.; Roy S.; Bryantsev V. S.; Ivanov A. S.; Gakhar R.; Woods M. E.; Gallington L. C.; Dai S.; Maltsev D. S.; Margulis C. J. J. Am. Chem. Soc. 2022, 144, 21751. |
| [20] | Wang H.; DeFever R. S.; Zhang Y.; Wu F.; Roy S.; Bryantsev V. S.; Margulis C. J.; Maginn E. J. J. Chem. Phys. 2020, 153, 214502. |
| [21] | Howe M.; McGreevy R. L. Philp. Mag. B 1988, 58, 485. |
| [22] | Tosi M.; Fumi F. J. Phys. Chem. Solids 1964, 25, 45. |
| [23] | Fumi F.; Tosi M. J. Phys. Chem. Solids 1964, 25, 31. |
| [24] | Dewan L. C.; Simon C.; Madden P. A.; Hobbs L. W.; Salanne M. J. Nucl. Mater. 2013, 434, 322. |
| [25] | Nam H. O.; Bengtson A.; V?rtler K.; Saha S.; Sakidja R.; Morgan D. J. Nucl. Mater. 2014, 449, 148. |
| [26] | Li X.; Song J.; Shi S.; Yan L.; Zhang Z.; Jiang T.; Peng S. J. Phys. Chem. A 2017, 121, 571. |
| [27] | Kwon C.; Noh S. H.; Chun H.; Hwang I. S.; Han B. Int. J. Energ. Res. 2018, 42, 2757. |
| [28] | Guo H.; Li J.; Zhang H.; Li T.; Luo J.; Yu X.; Wu S.; Zong C. Chem. Phys. Lett. 2019, 730, 587. |
| [29] | Galamba N.; Costa Cabral B. J. J. Chem. Phys. 2007, 126, 124502. |
| [30] | Glover W. J.; Madden P. A. J. Chem. Phys. 2004, 121, 7293. |
| [31] | Mukhopadhyay S.; Demmel F. In Proceedings of the Joint Conference on Quasielastic Neutron Scattering and the Workshop on Inelastic Neutron Spectrometers Qens/Wins 2016: Probing Nanoscale Dynamics in Energy Related Materials, Eds.: Felix, F.; David, L.; Veronika, G.; Wiebke, L.; Astrid, S.; Margarita, R.; AIP Publishing LLC, Potsdam, 2018, p. 030001. |
| [32] | McCulloch W. S.; Pitts W. Bull. Math. Biophys. 1943, 5, 115. |
| [33] | Behler J.; Parrinello M. Phys. Rev. Lett. 2007, 98, 146401. |
| [34] | Bartók A. P.; Payne M. C.; Kondor R.; Csanyi G. Phys. Rev. Lett. 2010, 104, 136403. |
| [35] | Schutt K. T.; Arbabzadah F.; Chmiela S.; Muller K. R.; Tkatchenko A. Nat. Commun. 2017, 8, 13890. |
| [36] | Han J.; Zhang L.; Car R.; E W. Commun. Comput. Phys. 2018, 23, 629. |
| [37] | Wang X.; Li J.; Yang L.; Chen F.; Wang Y.; Chang J.; Chen J.; Zhang L.; Yu K. ChemRxiv, Preprint. |
| [38] | Lot R.; Pellegrini F.; Shaidu Y.; Kucukbenli E. Comput. Phys. Commun. 2020, 256, 107402. |
| [39] | Bartók A. P.; Csányi G. Int. J. Quantum. Chem. 2015, 115, 1051. |
| [40] | Zhang Y.; Wang H.; Chen W.; Zeng J.; Zhang L.; Wang H.; E W. Comput. Phys. Commun. 2020, 253, 107206. |
| [41] | Porter T.; Vaka M. M.; Steenblik P.; Della Corte D. Commun. Chem. 2022, 5, 69. |
| [42] | Jiang W.; Zhang Y.; Zhang L.; Wang H. Chin. Phys. B 2021, 30, 050706. |
| [43] | Dai F. Z.; Wen B.; Sun Y. J.; Xiang H. M.; Zhou Y. C. J. Mater. Sci. Technol. 2020, 43, 168. |
| [44] | Goldsmith B. R.; Esterhuizen J.; Liu J. X.; Bartel C. J.; Sutton C. AIChE J. 2018, 64, 2311. |
| [45] | Ding X.; Tao M.; Li J. H.; Li M. Y.; Shi M. C.; Chen J. S.; Tang Z.; Benistant F.; Liu J. Mater. Sci. Semicon. Proc. 2022, 143, 106513. |
| [46] | Tovey S.; Narayanan Krishnamoorthy A.; Sivaraman G.; Guo J.; Benmore C.; Heuer A.; Holm C. J. Phys. Chem. C 2020, 124, 25760. |
| [47] | Liang W. S.; Lu G. M.; Yu J. G. J. Mater. Sci. Technol. 2021, 75, 78. |
| [48] | Xie Y.; Bu M.; Zou G.; Zhang Y.; Lu G. Sol. Energy Mater. Sol. Cells 2023, 254, 112275. |
| [49] | Liang W. S.; Lu G. M.; Yu J. G. Adv. Theory. Simul. 2020, 3, 2000180. |
| [50] | Bu M.; Liang W.; Lu G.; Yu J. Sol. Energy Mater. Sol. Cells 2021, 232, 111346. |
| [51] | Liang W.; Lu G.; Yu J. ACS Appl. Mater. Interfaces 2021, 13, 4034. |
| [52] | Bu M.; Liang W. S.; Lu G. M. Comp. Mater. Sci. 2022, 210, 111494. |
| [53] | Smirnov M. V.; Khokhlov V. A.; Filatov E. S. Electrochim. Acta 1987, 32, 1019. |
| [54] | Gheribi A. E.; Torres J. A.; Chartrand P. Sol. Energy Mater. Sol. Cells 2014, 126, 11. |
| [55] | Janz G. J.; Tomkins R. Physical Properties Data Compilations Relevant to Energy Storage. IV. Molten Salts: Data on Additional Single and multi-Component Salt Systems, National Standard Reference Data System, 1981. |
| [56] | Anderson N. A.; Sabharwall P. Nucl. Technol. 2012, 178, 335. |
| [57] | Xu X.; Wang X.; Li P.; Li Y.; Hao Q.; Xiao B.; Elsentriecy H.; Gervasio D. J. Sol. Energ.-T. ASME 2018, 140, 051011. |
| [58] | Xu T.; Li X.; Wang Y.; Tang Z. ACS Appl. Mater. Interfaces 2023, 15, 14184. |
| [59] | Zhang J.; Fuller J.; An Q. J. Phys. Chem. B 2021, 125, 8876. |
| [60] | Rodriguez A.; Lam S.; Hu M. ACS Appl. Mater. Interfaces 2021, 13, 55367. |
| [61] | Smith A. L.; Capelli E.; Konings R. J. M.; Gheribi A. E. J. Mol. Liq. 2020, 299, 112165. |
| [62] | Golyshev V. D.; Gonik M. A.; Petrov V. A.; Putilin Y. M. High Temp+. 1983, 21, 684. |
| [63] | Abe Y.; Kosugiyama O.; Nagashima A. J. Nucl. Mater. 1981, 99, 173. |
| [64] | Chahal R.; Roy S.; Brehm M.; Banerjee S.; Bryantsev V.; Lam S. T. JACS Au 2022, 2, 2693. |
| [65] | Brehm M.; Kirchner B. J. Chem. Inf. Model. 2011, 51, 2007. |
| [66] | Dracopoulos V.; Vagelatos J.; Papatheodorou G. N. J. Chem. Soc., Dalton Trans. 2001, 1117. |
| [67] | Nguyen M. T.; Rousseau R.; Paviet P. D.; Glezakou V. A. ACS Appl. Mater. Interfaces 2021, 13, 53398. |
| [68] | Li B.; Dai S.; Jiang D. E. ACS Appl. Energ. Mater. 2019, 2, 2112. |
| [69] | Barraz N. M., Jr.; Salcedo E.; Barbosa M. C. J. Chem. Phys. 2011, 135, 104507. |
| [70] | Rosenfeld Y. J. Phys.-Condens. Mat. 1999, 11, 5415. |
| [71] | Feng T.; Zhao J.; Liang W.; Lu G. Comp. Mater. Sci. 2022, 210, 111014. |
| [72] | Iwadate Y.; Suzuki K.; Onda N.; Fukushima K.; Watanabe S.; Matsuura H.; Kajinami A.; Takase K.; Ohtori N.; Umesaki N. J. Alloys Compd. 2006, 408, 248. |
| [73] | Okamoto Y.; Shiwaku H.; Yaita T.; Narita H.; Tanida H. J. Mol. Struct. 2002, 641, 71. |
| [74] | Wasse J. C.; Salmon P. S. J. Phys.-Condens. Mat. 1999, 11, 1381. |
| [75] | Ren P.; Xiao Y.; Chang X.; Huang P.-Y.; Li Z.; Chen X.; Wang X. ACM Comput. Surv. 2020, 54, 1. |
| [76] | Sivaraman G.; Guo J.; Ward L.; Hoyt N.; Williamson M.; Foster I.; Benmore C.; Jackson N. J. Phys. Chem. Lett. 2021, 12, 4278. |
| [77] | Guo J.; Merwin A.; Benmore C. J.; Mei Z.-G.; Hoyt N. C.; Williamson M. A. J. Phys. Chem. B 2019, 123, 10036. |
| [78] | Guo D.; Zhao J.; Liang W. S.; Lu G. M. J. Mol. Liq. 2022, 348, 118380. |
| [79] | Yin W.; Bo T.; Zhao Y.; Zhang L.; Chai Z.; Shi W. Sci. Sin. Chim. 2023, 53, 1008. |
/
| 〈 |
|
〉 |