研究展望

活性胶体马达的研究进展及其在电磁波吸收领域的应用展望

  • 郑靖 ,
  • 刘金坤 ,
  • 罗淳译 ,
  • 曾国超 ,
  • 吴广磊 ,
  • 侯旭
展开
  • a 厦门大学化学化工学院 厦门 361005
    b 青岛大学材料科学与工程学院 青岛 266071
    c 厦门大学固体表面物理化学国家重点实验室 厦门 361005
    d 厦门大学物理科学与技术学院 厦门 361005
    e 福建能源材料科学与技术创新实验室 厦门 361102

郑靖, 厦门大学化学化工学院副教授、博士生导师. 2012年获中国科学技术大学学士学位, 2019年获香港大学博士学位, 2018年至2021年在香港大学从事博士后研究, 2022年2月起, 入职厦门大学化学化工学院, 主要从事仿生活性物质研究.

刘金坤, 厦门大学化学化工学院博士研究生. 2016年获青岛大学学士学位, 2020年获青岛大学硕士学位, 主要从事电磁波吸收材料和活性胶体的研究.

侯旭, 国家杰出青年基金获得者、国家重点研发计划纳米科技重点专项项目负责人, 现任厦门大学化学化工学院、物理科学与技术学院双聘南强特聘教授, 厦门大学固体表面物理化学国家重点实验室副主任、电化学科学与工程研究所所长, 博士生导师. 侯旭教授所引领的原创“液体门控技术”被世界权威化学组织“国际纯粹与应用化学联合会(IUPAC)”评为2020年全球“化学领域十大新兴技术”. 他曾获得全国创新争先奖、科学探索奖、中国十大新锐人物等重要奖项.

庆祝《化学学报》创刊90周年.
共同第一作者

收稿日期: 2023-04-30

  网络出版日期: 2023-09-12

基金资助

国家自然科学基金(52025132); 国家自然科学基金(21621091); 国家自然科学基金(22021001); 国家自然科学基金(22121001); 国家自然科学基金(22275207); 国家自然科学基金(22275156); 国家自然科学基金(T2241022); 福建省自然科学基金(2022J02059); 111项目(B17027); 111项目(B16029); 中央高校基本科研专项资金(20720220019); 福建省能源材料科学与技术创新实验室科技项目(RD2022070601); 腾讯基金(XPLORER PRIZE)

Research Progress of Active Colloidal Motors and Their Application Perspective in Electromagnetic Wave Absorption

  • Jing Zheng ,
  • Jinkun Liu ,
  • Chunyi Luo ,
  • Guochao Zeng ,
  • Guanglei Wu ,
  • Xu Hou
Expand
  • a College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005
    b College of Materials Science and Engineering, Qingdao University, Qingdao 266071
    c State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005
    d College of Physical Science and Technology, Xiamen University, Xiamen 361005
    e Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102
Dedicated to the 90th anniversary of Acta Chimica Sinica.
These authors contributed equally to this work

Received date: 2023-04-30

  Online published: 2023-09-12

Supported by

National Natural Science Foundation of China(52025132); National Natural Science Foundation of China(21621091); National Natural Science Foundation of China(22021001); National Natural Science Foundation of China(22121001); National Natural Science Foundation of China(22275207); National Natural Science Foundation of China(22275156); National Natural Science Foundation of China(T2241022); the Natural Science Foundation of Fujian Province(2022J02059); 111 Project(B17027); 111 Project(B16029); Fundamental Research Funds for the Central Universities of China(20720220019); Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(RD2022070601); Tencent Foundation(XPLORER PRIZE)

摘要

活性胶体马达是一种可以自驱动运动的微纳米粒子, 具有执行微纳尺度复杂任务的能力, 在环境修复、生物医学应用及微纳制造等多个领域显示出了巨大的应用潜力. 梳理了活性胶体马达的发展历程及其最新研究进展, 讨论了其在不同环境下的驱动机制以及新型胶体马达的开发与其在不同领域的应用探究. 最后, 基于活性胶体马达和电磁波吸收材料的工作原理, 对其应用于电磁波吸收领域的可能性进行了展望, 包括活性胶体马达用于电磁波吸收领域的作用机制和可能的制备策略, 并对其潜在的性能及新功能应用提出了设想.

本文引用格式

郑靖 , 刘金坤 , 罗淳译 , 曾国超 , 吴广磊 , 侯旭 . 活性胶体马达的研究进展及其在电磁波吸收领域的应用展望[J]. 化学学报, 2023 , 81(10) : 1394 -1401 . DOI: 10.6023/A23040190

Abstract

Active colloidal motors are micro- or nanoparticles that can move actively and perform complex tasks at the micro- or nanoscale. They have great potential for various applications, such as environmental remediation, biomedical applications and micro- and nanomanufacturing. The development and latest research progress of active colloidal motors are reviewed, their driving mechanisms in different environments are discussed, and the development of new colloidal motors and their applications in different fields are explored. Finally, the perspective on the possible application of active colloidal motors in the field of electromagnetic wave absorption, including the mechanism of action, possible preparation strategies for electromagnetic wave absorption, and their potential performance and new functional applications are presented.

参考文献

[1]
Li, J.; Esteban-Fernández de ávila, B.; Gao, W.; Zhang, L.; Wang, J. Sci. Robot. 2017, 2, eaam6431.
[2]
Yang, Q.; Xu, L.; Zhong, W.; Yan, Q.; Gao, Y.; Hong, W.; She, Y.; Yang, G. Adv. Intell. Syst. 2020, 2, 2000049.
[3]
Guo, N.; Wang, B.; Liu, F. Acta Chim. Sinica 2018, 76, 196 (in Chinese).
[3]
(郭妮, 王斌, 刘峰毅, 化学学报, 2018, 76, 196.)
[4]
Mirkovic, T.; Zacharia, N. S.; Scholes, G. D.; Ozin, G. A. ACS Nano 2010, 4, 1782.
[5]
Sengupta, S.; Ibele, M. E.; Sen, A. Angew. Chem., Int. Ed. 2012, 51, 8434.
[6]
Zheng, J.; Dai, B.; Wang, J.; Xiong, Z.; Yang, Y.; Liu, J.; Zhan, X.; Wan, Z.; Tang, J. Nat. Commun. 2017, 8, 1438.
[7]
Wu, J.; Balasubramanian, S.; Kagan, D.; Manesh, K. M.; Campuzano, S.; Wang, J. Nat. Commun. 2010, 1, 36.
[8]
Zheng, J.; Wang, J.; Xiong, Z.; Wan, Z.; Zhan, X.; Yang, S.; Chen, J.; Dai, J.; Tang, J. Adv. Funct. Mater. 2019, 29, 1901768.
[9]
Yu, M.; Zhao, W.; Zhang, K.; Guo, X. Acta Chim. Sinica 2021, 79, 500 (in Chinese).
[9]
(于淼, 赵武, 张凯, 郭鑫, 化学学报, 2021, 79, 500.)
[10]
Wang, J.; Xiong, Z.; Zheng, J.; Zhan, X.; Tang, J. Acc. Chem. Res. 2018, 51, 1957.
[11]
Blickle, V.; Bechinger, C. Nat. Phys. 2012, 8, 143.
[12]
Frangioni, J. V. Curr. Opin. Chem. Biol. 2003, 7, 626.
[13]
Vahrmeijer, A. L.; Hutteman, M.; Van Der Vorst, J. R.; Van De Velde, C. J. H.; Frangioni, J. V. Nat. Rev. Clin. Oncol. 2013, 10, 507.
[14]
Yang, M.; Guo, X.; Mou, F.; Guan, J. Chem. Rev. 2022, 123, 3944.
[15]
Li, H.; Li, Y.; Liu, J. ; He, Q.; Wu, Y. Nanoscale 2022, 14, 7444.
[16]
Ahmed, D.; Baasch, T.; Jang, B.; Pane, S.; Dual, J.; Nelson, B. J. Nano Lett. 2016, 16, 4968.
[17]
Dong, R.; Cai, Y.; Yang, Y.; Gao, W.; Ren, B. Acc. Chem. Res. 2018, 51, 1940.
[18]
Wang, W.; Duan, W.; Ahmed S.; Mallouk, T. E.; Sen, A. Nano Today 2013, 8, 531.
[19]
Chen, X.; Jang, B.; Ahmed, D.; Hu, C.; Marco, C. D.; Hoop, M.; Mushtaq, F.; Nelson, B. J.; Pané, S. Adv. Mater. 2018, 30, e1705061.
[20]
Han, K.; Shields Iv, C. W.; Velev, O. D. Adv. Funct. Mater. 2017, 28, 1705953.
[21]
Chen, H.; Zhao, Q.; Du, X. Micromachines 2018, 9, 41.
[22]
Moran, J. L.; Posner, J. D. Annu. Rev. Fluid Mech. 2017, 49, 511.
[23]
Zhou, C.; Zhang, H.; Tang, J.; Wang, W. Langmuir 2018, 34, 3289.
[24]
Popescu, M. N.; Uspal, W. E.; Dietrich, S. Eur. Phys. J.: Spec. Top. 2016, 225, 2189.
[25]
Yang, F.; Qian, S.; Zhao, Y.; Qiao, R. Langmuir 2016, 32, 5580.
[26]
Ismagilov, R. F.; Schwartz, A.; Bowden, N.; Whitesides, G. M. Angew. Chem., Int. Ed. 2002, 41, 652.
[27]
Mou, F.; Chen, C.; Ma, H.; Yin, Y.; Wu, Q.; Guan, J. Angew. Chem., Int. Ed. 2013, 52, 7208.
[28]
Paxton, W. F.; Baker, P. T.; Kline, T. R.; Wang, Y.; Mallouk, T. E.; Sen, A. J. Am. Chem. Soc. 2006, 128, 14881.
[29]
Ibele, M. E.; Lammert, P. E.; Crespi, V. H.; Sen, A. ACS Nano 2010, 4, 4845.
[30]
Wang, W.; Lv, X.; Moran, J. L.; Duan, S.; Zhou, Z. Soft Matter 2020, 16, 3846.
[31]
Yu, H.; Tang, W.; Mu, G.; Wang, H.; Chang, X.; Dong, H.; Qi, L.; Zhang, G.; Li, T. Micromachines 2018, 9, 540.
[32]
Londhe, V.; Sharma, P. Mater. Sci. Eng., C 2020, 117, 111330.
[33]
Chen, H.; Zhao, Q.; Wang, Y.; Mu, S.; Cui, H.; Wang, J.; Kong, T.; Du, X. ACS Appl. Mater. Interfaces 2019, 11, 15927.
[34]
Yan, J.; Han, M.; Zhang, J.; Xu, C.; Luijten, E.; Granick, S. Nat. Mater. 2016, 15, 1095.
[35]
Ma, F.; Yang, X.; Zhao, H.; Wu, N. Phys. Rev. Lett. 2015, 115, 208302.
[36]
Wang, W.; Castro, L. A.; Hoyos, M.; Mallouk, T. E. ACS Nano. 2012, 6, 6122.
[37]
Chen, C.; Mou, F.; Xu, L.; Wang, S.; Guan, J.; Feng, Z.; Wang, Q.; Kong, L.; Li, W.; Wang, J.; Zhang, Q. Adv. Mater. 2017, 29, 1603374.
[38]
Dai, B.; Wang, J.; Xiong, Z.; Zhan, X.; Dai, W.; Li, C.; Feng, S.; Tang, J. Nat. Nanotechnol. 2016, 11, 1087.
[39]
Ahmed, S.; Wang, W.; Bai, L.; Gentekos, D. T.; Hoyos, M.; Mallouk, T. E. ACS Nano 2016, 10, 4763.
[40]
Zhou, C.; Gao, C.; Lin, Z.; Wang, D.; Li, Y.; Yuan, Y.; Zhu, B.; He, Q. Langmuir 2020, 36, 7039.
[41]
Tu, Y.; Peng, F.; Sui, X.; Men, Y.; White, P. B.; Van Hest, J. C. M.; Wilson, D. A. Nat. Chem. 2017, 9, 480.
[42]
Liu, T.; Xie, L.; Price, C. A. H.; Liu, J.; He, Q.; Kong, B. Chem. Soc. Rev. 2022, 51, 10083.
[43]
Tang, Y.; Pei, F.; Lu, X.; Fan, Q.; Huang, W. Adv. Mater. Technol. 2019, 7, 1900917.
[44]
Yao, Z.; Carballido-Lopez, R. Annu. Rev. Microbiol. 2014, 68, 45913291329.
[45]
Soto, F.; Wang, J.; Ahmed, R.; Demirci, U. Adv. Sci. 2020, 7, 2002203.
[46]
Wu, Z.; Wu, Y.; He, W.; Lin, X.; Sun, J.; He, Q. Angew. Chem., Int. Ed. 2013, 52, 7000.
[47]
Wu, Z.; Li, L.; Yang, Y.; Hu, P.; Li, Y.; Yang, S. Y.; Wang, L. V.; Gao, W. Sci. Robot. 2019, 4, eaax0613.
[48]
Huang, Y.; Li, T.; Gao, W.; Wang, Q.; Li, X.; Mao, C.; Zhou, M.; Wan, M.; Shen, J. J. Mater. Chem. B 2020, 8, 5765.
[49]
Piszczek, G.; Gryczynski, I.; Maliwal, B. P.; Lakowicz, J. R. J. Fluoresc. 2002, 12, 15.
[50]
Chen, S.; Sun, X.; Fu, M.; Liu, X.; Pang, S.; You, Y.; Liu, X.; Wang, Y.; Yan, X.; Ma, X. Biomaterials 2022, 288, 121744.
[51]
Tang, X.; Manamanchaiyaporn, L.; Zhou, Q.; Huang, C.; Li, L.; Li, Z.; Wang, L.; Wang, J.; Ren, L.; Xu, T.; Yan, X.; Zheng, Y. Small 2022, 18, 2202848.
[52]
Srivastava, S. K.; Medina-Sanchez, M.; Koch, B.; Schmidt, O. G. Adv. Mater. 2016, 28, 832.
[53]
Servant, A.; Qiu, F.; Mazza, M.; Kostarelos, K.; Nelson, B. J. Adv. Mater. 2015, 27, 2981.
[54]
Li, W.; Wu, C.; Xiong, Z.; Liang, C.; Li, Z.; Liu, B.; Cao, Q.; Wang, J.; Tang, J.; Li, D. Sci. Adv. 2022, 8, eade1731.
[55]
Yang, J.; Yan, X.; Lyu, Y.; Xing, N.; Yang, P.; Song, P.; Zuo, M. ACS Appl. Mater. Interfaces 2022, 14, 6484.
[56]
Li, L.; Hao, B.; Xiang, C.; Tong, G.; Chen, K. Acta Chim. Sinica 2010, 68, 583 (in Chinese).
[56]
(李良超, 郝斌, 向晨, 童国秀, 陈柯宇, 化学学报, 2010, 68, 583.)
[57]
Yang, X.; Gao, W.; Chen, J.; Lu, X.; Yang, D.; Kang, Y.; Liu, Q.; Qing, Y.; Huang, W. Chin. J. Chem. 2023, 41, 64.
[58]
Han, Y.; Li, S.; Liu, J.; Yu, M. Acta Chim. Sinica 2011, 69, 53 (in Chinese).
[58]
(韩宇, 李松梅, 刘建华, 于美, 化学学报, 2011, 69, 53.)
[59]
Lv, H.; Yao, Y.; Li, S.; Wu, G.; Zhao, B.; Zhou, X.; Zhou, Y.; Xi, S.; Liu, B.; Che, R.; Wu, R. Nat. Commun. 2023, 14, 1982.
[60]
Luo, X.; Li, L.; Zhang, H.; Zhao, S.; Zhang, Y.; Chen, W.; Yu, Z. ACS. Appl. Mater. Interfaces 2021, 13, 45833.
文章导航

/