研究展望

钯(II)催化不对称C(sp3)—H键官能团化研究进展

  • 韩叶强 ,
  • 史炳锋
展开
  • a 浙江大学化学系 杭州 310027
    b 郑州大学化学学院绿色催化中心 郑州 450000

韩叶强, 2016年毕业于浙江工业大学获学士学位, 之后在浙江大学史炳锋教授的指导下攻读博士学位并在2021年获得理学博士学位, 2021年7月加入黄飞鹤教授课题组从事博士后研究. 主要研究方向为不对称碳氢键活化和新型大环体系的高效构筑.

史炳锋, 博士, 教授, 独立课题组组长. 2001年本科毕业于南开大学化学系, 2006年博士毕业于中科院上海有机所. 2006年到2007年在University of California, San Diego从事博士后研究, 2007年到2010年加入The Scripps Research Institute从事博士后研究. 2010年4月加入浙江大学化学系, 任独立课题组组长, 博士生导师, 主要研究领域为过渡金属催化的惰性键活化及其在天然产物全合成中的应用.

庆祝《化学学报》创刊90周年.

收稿日期: 2023-07-13

  网络出版日期: 2023-09-12

基金资助

国家重点研发计划(2022YFA1504302); 国家自然科学基金(U22A20388)

Palladium(II)-Catalyzed Enantioselective Functionalization of C(sp3)—H Bonds

  • Yeqiang Han ,
  • Bingfeng Shi
Expand
  • a Department of Chemistry, Zhejiang University, Hangzhou 310027
    b Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450000
Dedicated to the 90th anniversary of Acta Chimica Sinica.
*E-mail: ; Tel.: 0086-571-88981229

Received date: 2023-07-13

  Online published: 2023-09-12

Supported by

National Key Research and Development Program of China(2022YFA1504302); National Natural Science Foundation of China(U22A20388)

摘要

手性化合物在自然界中无处不在, 其不对称合成一直是合成化学研究的热点. 近年来, 钯催化C(sp3)—H键不对称官能团化取得了非常重要的进展, 为手性分子的构筑提供了一种高效且简洁的方法. 通过手性配体的有效调控, 立体选择性地活化C(sp3)—H键, 形成手性环钯中间体, 继而被转化成各种官能团的方法受到了广大化学家的青睐. 总结了通过上述策略实现的C(sp3)—H键的不对称官能团化反应, 按照反应碳氢键的类别, 分为甲基碳氢键、张力环亚甲基碳氢键、杂原子α-位亚甲基碳氢键、苄位亚甲基碳氢键和非活化亚甲基碳氢键. 最后, 对该领域的局限性和未来发展进行了展望和总结.

本文引用格式

韩叶强 , 史炳锋 . 钯(II)催化不对称C(sp3)—H键官能团化研究进展[J]. 化学学报, 2023 , 81(11) : 1522 -1540 . DOI: 10.6023/A23070336

Abstract

Chiral molecules are ubiquitous in nature and play an important role in natural products, pharmaceuticals, agriculture, advanced materials, as well as living organisms. Therefore, the development of efficient strategies to enable the facile construction of enantiopure chiral compounds in an atom- and step-economical manner is of great importance. The enantioselective functionalization of C—H bonds without multi-steps transformation is arguably one of the most powerful and straightforward strategies to fulfill this goal. This emerging research field has been rapidly developed with the innovation of various chiral catalysts and/or ligands in recent years. In particular, significant advances have been achieved in palladium-catalyzed enantioselective functionalization of C(sp3)—H bonds, streamlining the efficient and concise construction of chiral molecules from readily available hydrocarbon feedstocks. The stereoselective functionalization of C(sp3)—H bonds with the assistance of chiral ligand to form a chiral palladacycle intermediate, which could be transformed into various chemical bonds to form functionalized chiral compounds, has attracted tremendous attention. Thus, this perspective summarizes the advances on palladium(II)-catalyzed enantioselective functionalization of C(sp3)—H bonds via asymmetric C—H palladation. According to the type of C—H bonds, this perspective is classified into several sections, including methyl C(sp3)—H bonds, methylene C(sp3)—H bonds in constrained cycloalkanes, functionalization of methylene C(sp3)—H bonds adjacent to α-heteroatom, benzylic methylene C(sp3)—H bonds, and unbiased methylene C(sp3)—H bonds. The emphasis of this perspective focuses on the discussion of the philosophy of developing novel chiral ligands and the mode of stereocontrol. The remaining limitations and challenges regarding to chemo- and enantioselective control in this field is also discussed. Further development of new chiral ligands and catalytic systems is expected to address these issues and expands the scope of this powerful synthetic strategy. We anticipate that this perspective might inspire more efforts to this emerging research field and the strategy might find wide applications in the synthesis of complicated chiral molecules, such as natural products and drugs.

参考文献

[1]
(a) Godula K.; Sames D. Science 2006, 312, 67.
[1]
(b) Chen X.; Engle K. M.; Wang D.-H.; Yu J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
[1]
(b) Lyons T. W.; Sanford M. S. Chem. Rev. 2010, 110, 1147.
[1]
(c) Baudoin O. Chem. Soc. Rev. 2011, 40, 4902.
[1]
(d) Rago A. J.; Dong G. Green Synth. Catal. 2021, 2, 216.
[1]
(e) Tong H.-R.; Li B.; Li G.; He G.; Chen G. CCS Chem. 2021, 3, 1797.
[1]
(f) Shi L.; Li T.; Mei G.-J. Green Synth. Catal. 2022, 3, 227.
[1]
(g) Tang L.; Hu Q.; Yang K.; Elsaid M.; Liu C.; Ge H. Green Synth. Catal. 2022, 3, 203.
[1]
(h) Newton C. G.; Wang S.-G.; Oliveira C. C.; Cramer N. Chem. Rev. 2017, 117, 8908.
[2]
(a) Pan F.; Shi Z. Acta Chim. Sinica 2012, 70, 1679. (in Chinese)
[2]
( 潘菲, 施章杰, 化学学报, 2012, 70, 1679.)
[2]
(b) Huang J.; Gu Q.; You S.-L. Chin. J. Org. Chem. 2018, 38, 51. (in Chinese)
[2]
( 黄家翩, 顾庆, 游书力, 有机化学, 2018, 38, 51.)
[2]
(c) Cai Y.; Jiao L.; Qiu X.; Du Z. Chem. Res. Chinese U. 2020, 36, 843.
[2]
(d) Liao G.; Wu Y.-J.; Shi B.-F. Acta Chim. Sinica, 2020, 78, 289. (in Chinese)
[2]
( 廖港, 吴勇杰, 史炳锋, 化学学报, 2020, 78, 289.)
[2]
(e) Cheng X.; Lei A.; Mei T.-S.; Xu H.-C.; Xu K.; Zeng C. CCS Chem. 2022, 4, 1120.
[2]
(f) Xiang X.; He Z.; Dong X. Chin. J. Org. Chem. 2023, 43, 791. (in Chinese)
[2]
向勋, 何照林, 董秀琴, 有机化学, 2023, 43, 791).
[2]
(g) Chen J.-H.; Shi B.-F. Chin. J. Org. Chem. 2022, 42, 2999. (in Chinese)
[2]
( 陈嘉豪, 史炳锋, 有机化学, 2022, 42, 2999.)
[2]
(h) Wang F.; Li X. Chin. J. Org. Chem. 2022, 42, 4350. (in Chinese)
[2]
( 王芬, 李兴伟, 有机化学, 2022, 42, 4350.)
[2]
(i) Chen J.-H.; Shi B.-F. Chin. J. Org. Chem. 2023, 43, 2252. (in Chinese)
[2]
( 陈嘉豪, 史炳锋, 有机化学, 2023, 43, 2252.)
[3]
(a) Giri R.; Shi B.-F.; Engle K. M.; Maugel N.; Yu J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
[3]
(b) You S.-L. Asymmetric Functionalization of C-H Bonds, Royal Society of Chemistry, Cambridge, 2015.
[3]
(c) Newton C. G.; Wang S.-G.; Oliveira C. C.; Cramer N. Chem. Rev. 2017, 117, 8908.
[3]
(d) Wang Q.; Gu Q.; You S.-L. Acta Chim. Sinica 2019, 77, 690. (in Chinese)
[3]
( 王强, 顾庆, 游书力, 化学学报, 2019, 77, 690.)
[3]
(e) Liao G.; Zhang T.; Liu Z.-K.; Shi B.-F. Angew. Chem., Int. Ed. 2020, 59, 19773.
[3]
(f) Achar T.; Maiti S.; Jana S.; Maiti D. ACS Catal. 2020, 10, 13748.
[3]
(g) Du Y.; Huang Y.; Gao Y.; Shen H.; Su W.; Hong M. Sci. Sin.-Chim. 2021, 51, 123. (in Chinese)
[3]
( 杜宇, 黄永亮, 高越, 沈慧, 苏伟平, 洪茂椿, 中国科学: 化学, 2021, 51, 123.)
[3]
(h) Yu X.; Zhang Z.-Z.; Niu J.-L.; Shi B.-F. Org. Chem. Front. 2022, 9, 1458.
[4]
(a) Hayashi H.; Uchida T. Eur. J. Org. Chem., 2020, 2020, 909.
[4]
(b) Xia Y.; Qiu D.; Wang J. Chem. Rev. 2017, 117, 13810.
[4]
(c) Davies H. M. L.; Manning J. R. Nature 2008, 451, 417.
[5]
(a) Wang F.; Chen P.; Liu G. Acc. Chem. Res. 2018, 51, 2036.
[5]
(b) Costa M. Chem. Rec. 2021, 21, 4000.
[5]
(c) Zhang Z.; Chen P.; Liu G. Chem. Soc. Rev. 2022, 51, 1640.
[5]
(d) Zhang C.; Li Z.-L.; Gu Q.-S.; Liu X.-Y. Nat. Commun. 2021, 12, 475.
[6]
(a) Saint-Denis T. G.; Zhu R.-Y.; Chen G.; Wu Q.-F.; Yu J.-Q. Science 2018, 359, 759.
[6]
(b) Zhan B.-B.; Jin L.; Shi B.-F. Trends in Chem. 2022, 4, 220.
[7]
(a) Vyhivskyi O.; Kudashev A.; Miyakoshi T.; Baudoin O. Chem. Eur. J. 2021, 27, 1231;
[7]
(b) Wang P.-S.; Gong L.-Z. Acc. Chem. Res. 2020, 53, 2841.
[7]
(c) Wang P.-S.; Gong L.-Z. Chin. J. Chem. 2023, 41, 1841.
[7]
(d) Wang P.-S.; Gong L.-Z. Synthesis 2022, 54, 4795.
[8]
(a) Wang H.; Xu Y.; Zhang F.; Liu Y.; Feng X. Angew. Chem., Int. Ed. 2022, 61, e202115715.
[8]
(b) Liu X.; Dong S.; Lin L.; Feng X. Chin. J. Chem. 2018, 36, 791.
[8]
(c) Cao W.; Liu X.; Feng X. Chin. Sci. Bull. 2020, 65, 2941.
[8]
(d) Liu X.; Zheng H.; Xia Y.; Lin L.; Feng X. Acc. Chem. Res. 2017, 50, 2621.
[8]
(e) Liu X.; Lin L.; Feng X. Org. Chem. Fron. 2014, 1, 298.
[8]
(f) Liu X.; Lin L.; Feng X. Acc. Chem. Res. 2011, 44, 574.
[9]
(a) Shi B.-F.; Maugel N.; Zhang Y.-H.; Yu J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882.
[9]
(b) Wu Q.-F.; Shen P.-X.; He J.; Wang X.-B.; Zhang F.; Shao Q.; Zhu R.-Y.; Mapelli C.; Qiao J. X.; Poss M. A.; Yu J-Q. Science 2017, 355, 499.
[10]
Jiang H.-J.; Zhong X.-M.; Liu Z. Y.; Geng R. L.; Li Y. Y.; Wu Y.-D.; Zhang X.; Gong L.-Z. Angew. Chem., Int. Ed. 2020, 59, 12774.
[11]
Yuan C.; Wang X.; Jiao L. Angew. Chem., Int. Ed. 2023, 62, e202300854.
[12]
Shao Q.; Wu Q.-F.; He J.; Yu J.-Q. J. Am. Chem. Soc. 2018, 140, 5322.
[13]
He J.; Shao Q.; Wu Q.; Yu J.-Q. J. Am. Chem. Soc. 2017, 139, 3344.
[14]
Smalley A. P.; Cuthbertson J. D.; Gaunt M. J. J. Am. Chem. Soc. 2017, 139, 1412.
[15]
Jiang H.-J.; Geng R.-L.; Wei J.-H; Gong L.-Z. Chin. J. Chem. 2021, 39, 3269.
[16]
Uchikura T.; Kato S.; Makino Y.; Fujikawa M. J.; Yamanaka M.; Akiyama T. J. Am. Chem. Soc. 2023, 145, 15906.
[17]
Wasa M.; Engle K. M.; Lin D. W.; Yoo E. J.; Yu J.-Q. J. Am. Chem. Soc. 2011, 133, 19598.
[18]
Xiao K.-J.; Lin D. W.; Miura M.; Zhu R.-Y.; Gong W.; Wasa M.; Yu J.-Q. J. Am. Chem. Soc. 2014, 136, 8138.
[19]
Chan K. S. L.; Fu H.-Y.; Yu J.-Q. J. Am. Chem. Soc. 2015, 137, 2042.
[20]
Wu Q.-F.; Wang X.-B.; Shen P.-X.; Yu J.-Q. ACS Catal. 2018, 8, 2577.
[21]
Xiao L.-J.; Hong K.; Luo F.; Hu L.; Ewing W. R.; Yeung K.-S.; Yu J.-Q. Angew. Chem., Int. Ed. 2020, 59, 9594.
[22]
Zhuang Z.; Yu J.-Q. J. Am. Chem. Soc. 2020, 142, 12015.
[23]
Shen P.-X.; Hu L.; Shao Q.; Hong K.; Yu J.-Q. J. Am. Chem. Soc. 2018, 140, 6545.
[24]
Hu L.; Shen P.-X.; Shao Q.; Hong K.; Qiao J. X.; Yu J.-Q. Angew. Chem., Int. Ed. 2019, 58, 2134.
[25]
Jain P.; Verma P.; Xia G.; Yu J.-Q. Nat. Chem. 2017, 9, 140.
[26]
Jiang H.-J.; Zhong X.-M.; Yu J.; Zhang Y.; Zhang X.; Wu Y.-D.; Gong L.-Z. Angew. Chem., Int. Ed. 2019, 58, 1803.
[27]
Zhang F.-L.; Hong K.; Li T.-J.; Park H.; Yu J.-Q. Science 2016, 351, 252.
[28]
Park H.; Verma P.; Hong K.; Yu J.-Q. Nat. Chem. 2018, 10, 755.
[29]
Yan S.-B.; Zhang S.; Duan W.-L. Org. Lett. 2015, 17, 2458.
[30]
Tong H.-R.; Zheng S.; Li X.; Deng Z.; Wang H.; He G.; Peng Q.; Chen G. ACS Catal. 2018, 8, 11502.
[31]
Wang H.; Tong H.-R.; He G.; Chen G. Angew. Chem., Int. Ed. 2016, 55, 15387.
[32]
Chen G.; Gong W.; Zhuang Z.; Andr? M. S.; Chen Y.-Q.; Hong X.; Yang Y.-F.; Liu T.; Houk K. N.; Yu J.-Q. Science 2016, 353, 1023.
[33]
Yang Y.-F.; Chen G.; Hong X.; Yu J.-Q.; Houk K. N. J. Am. Chem. Soc. 2017, 139, 8514.
[34]
Li H.-L.; Yang D.-F.; Jing H.-Q.; Antilla J. C.; Kuninobu Y. Org. Lett. 2022, 24, 1286.
[35]
(a) Zhang Q.; Chen K.; Rao W.-H.; Zhang Y.; Chen F.-J.; Shi B.-F. Angew. Chem. Int. Ed. 2013, 52, 13588.
[35]
(b) Chen F.-J.; Zhao S.; Hu F.; Chen K.; Zhang Q.; Zhang S.-Q.; Shi B.-F. Chem. Sci. 2013, 4, 4187.
[35]
(c) Zhang Qi; Shi B.-F. Chin. J. Chem. 2019, 37, 647.
[35]
(d) Zhang Q.; Shi B.-F. Acc. Chem. Res. 2021, 54, 2750.
[36]
Yan S.-Y.; Han Y.-Q.; Yao Q.-J.; Nie X.-L.; Liu L.; Shi B.-F. Angew. Chem., Int. Ed. 2018, 57, 9093.
[37]
Han Y.-Q.; Ding Y.; Zhou T.; Yan S.-Y.; Song H.; Shi B.-F. J. Am. Chem. Soc. 2019, 141, 4558.
[38]
Zhou T.; Jiang M. X.; Yang X.; Yue Q.; Han Y.-Q.; Ding Y.; Shi B.-F. Chin. J. Chem. 2020, 38, 242.
[39]
Tong H.-R.; Zheng W.; Lv X.; He G.; Liu P.; Chen G. ACS Catal. 2019, 10, 114.
[40]
Ding Y.; Han Y.-Q.; Wu L.-S.; Zhou T.; Yao Q.-J.; Feng Y.-L.; Li Y.; Kong K.-X.; Shi B.-F. Angew. Chem., Int. Ed. 2020, 59, 14060.
[41]
Han Y.-Q.; Zhang Q.; Yang X.; Jiang M. X.; Ding Y.; Shi B.-F. Org. Lett. 2021, 23, 97.
[42]
Jiang M. X.; Yang X.; Han Y.-Q.; Zhou T.; Xu X.-T.; Zhang K.; Shi B.-F. Org. Chem. Front. 2021, 8, 2903.
[43]
Yang X.; Jiang M.-X.; Zhou T.; Han Y.-Q.; Xu X.-T.; Zhang K.; Shi B.-F. Chem. Commun. 2021, 57, 5562.
[44]
Andr? M. S.; Schifferer L.; Pollok C. H.; Merten C.; Goo?en L. J.; Yu J.-Q. Chem. Eur. J. 2019, 25, 8503.
[45]
Wasa M.; Chan K. S. L.; Zhang X.-G.; He J.; Miura M.; Yu J.-Q. J. Am. Chem. Soc. 2012, 134, 18570.
[46]
Nack W. A.; Wang B.; Wu X.; Jiao R.; He G.; Chen G. Org. Chem. Front. 2016, 3, 561.
[47]
Han Y.-Q.; Yang X.; Kong K.-X.; Deng Y. T.; Wu L.-S.; Ding Y.; Shi B.-F. Angew. Chem., Int. Ed. 2020, 59, 20455.
[48]
Wu L.-S.; Ding Y.; Han Y.-Q.; Shi B.-F. Org. Lett. 2021, 23, 2048.
[49]
Zhang Q.; Shi B.-F. Chem. Sci. 2021, 12, 841.
文章导航

/