高镍三元高比能固态锂离子电池的研究进展
收稿日期: 2023-08-08
网络出版日期: 2023-09-12
基金资助
国家自然科学基金(52073298); 国家自然科学基金(52273221); 中国科学院青年创新促进会(2020217); 江苏省高效电化学储能技术重点实验室开放课题基金(EEST2022-1)
Research Progress of High-energy-density Solid-state Lithium Ion Batteries Employing Ni-rich Ternary Cathodes
Received date: 2023-08-08
Online published: 2023-09-12
Supported by
National Natural Science Foundation of China(52073298); National Natural Science Foundation of China(52273221); Youth Innovation Promotion Association of Chinese Academy of Sciences(2020217); Open Fund of Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies(EEST2022-1)
在全球“碳达峰、碳中和”双碳战略的宏观大背景下, 新能源汽车以其绿色低碳、清洁可持续等优点已经成为传统燃油车的理想替代品, 并且在未来交通行业极具发展优势. 然而随着电动汽车对更长续航里程和更高安全性能要求的不断攀升, 作为电动汽车能源供给核心的液态锂离子电池无论是能量密度还是安全性, 均已经捉襟见肘. 因为目前采用传统液态碳酸酯电解液的锂离子电池存在易泄露、易挥发、易燃烧和易爆炸等重大安全隐患, 且能量密度已经接近其理论能量密度上限. 因此, 亟待颠覆性储能技术的出现. 采用固态电解质构建的高镍三元/石墨(或硅碳)固态锂离子电池, 同时兼顾了高能量密度和高安全特性, 是液态锂离子电池的升级版本. 笔者调研发现: 截至目前采用固态电解质构建高安全、高能量密度的高镍三元/石墨(或硅碳)固态锂离子电池已经取得相当大的研究进展, 因此本文从无机固态电解质和聚合物固态电解质两方面对构建的高镍三元/石墨(或硅碳)固态锂离子电池研究进展以及固态锂离子电池的界面稳定机制进行了详细阐述. 还对高镍三元/石墨(或硅碳)固态锂离子电池所存在的挑战以及未来发展趋势进行了详细展望.
张雅岚 , 苑志祥 , 张浩 , 张建军 , 崔光磊 . 高镍三元高比能固态锂离子电池的研究进展[J]. 化学学报, 2023 , 81(12) : 1724 -1738 . DOI: 10.6023/A23080370
To achieve carbon peaking and carbon neutrality goals, increasing the share of non-fossil energy consumption and accelerating the growth of clean, low-carbon and sustainable energy are highly desirable in developing a clean and diversified energy supply system. In this retrospect, new energy vehicles have become an ideal substitute for the traditional fuel vehicles due to their green, low-carbon, clean and sustainable characteristics, and have promising development in the future transportation industry. However, the continuously increasing demand for longer range and safety performance in electric vehicles has challenged the state-of-the-art liquid-state lithium-ion batteries. At present, the conventional lithium-ion batteries based on the traditional carbonate liquid-state electrolyte face many potential safety issues, such as leakage, volatility, combustion and explosion. In addition, their energy density reaches closely to their theoretical upper limit. Therefore, breakthroughs in battery storage technologies are urgently needed. Solid-state lithium-ion batteries, which are built with solid-state electrolytes and Ni-rich cathodes/graphite (or silicon-carbon) electrodes are the most promising battery technologies combining high energy density and improved safety property. An in-depth literature survey shows that considerable progress in the construction of high safety, high energy density Ni-rich cathodes/graphite (or silicon-carbon) solid-state lithium-ion batteries have been achieved recently. Hence, this review mainly summarizes the research progress and the development of Ni-rich cathodes/graphite (or silicon-carbon) solid-state lithium-ion batteries using inorganic solid electrolytes and polymer solid electrolytes. Moreover, the remaining challenges and future development trends of Ni-rich cathodes/graphite (or silicon-carbon) solid-state lithium-ion batteries are also discussed and presented. It is expected that the current review would contribute to the further research and development of Ni-rich cathodes/graphite (or silicon-carbon) solid-state lithium-ion batteries.
[1] | Friedlingstein, P.; O'sullivan, M.; Jones, M. W.; Andrew, R. M.; Gregor, L.; Hauck, J.; Quéré, C. L.; Luijkx, I. T.; Olsen, A.; Peters, G. P. Earth Syst. Sci. Data 2022, 14, 4811. |
[2] | Cao, C.; Zhong, Y.; Shao, Z. Chin. J. Chem. 2023, 41, 1119. |
[3] | Chen, L.; Huang, Y.-F.; Ma, J.; Ling, H.; Kang, F.; He, Y.-B. Energy Fuels 2020, 34, 13456. |
[4] | Zhao, R.; Yang, J.; Wang, B.; Ma, Z.; Pan, L.; Li, Y. Chin. J. Chem. 2023, 41, 2493. |
[5] | Chawla, N.; Bharti, N.; Singh, S. Batteries 2019, 5, 19. |
[6] | Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. Energy Environ. Mater. 2023, 12450. |
[7] | Ye, Z.; Qiu, L.; Yang, W.; Wu, Z.; Liu, Y.; Wang, G.; Song, Y.; Zhong, B.; Guo, X. Chem. - Eur. J. 2021, 27, 4249. |
[8] | Du, C.; Zhao, Z.; Liu, H.; Song, F.; Chen, L.; Cheng, Y.; Guo, Z.; Chem. Rec. 2023, 23, 202300004. |
[9] | Liu, H.; Sun, Q.; Zhang, H.; Cheng, J.; Li, Y.; Zeng, Z.; Zhang, S.; Xu, X.; Ji, F.; Li, D.; Lu, J.; Ci, L. Energy Storage Mater. 2023, 55, 244. |
[10] | Chae, S.; Choi, S. H.; Kim, N.; Sung, J.; Cho, J. Angew. Chem., Int. Ed. 2020, 59, 110. |
[11] | Lu, J.-S.; Chen, J.-M.; He, T.-X.; Zhao, J.-W.; Liu, J.; Huo, Y.-P. Prog. Chem. 2021, 33, 1344 (in Chinese). |
[11] | (陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平, 化学进展, 2021, 33, 1344.) |
[12] | Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Adv. Energy Mater. 2018, 8, 1702028. |
[13] | Nagata, H.; Akimoto, J. J. Power Sources 2022, 539, 231596. |
[14] | Akimoto, J.; Akao, T.; Kataoka, K. Small 2023, 2301617. |
[15] | Qiu, Z.-P.; Zhang, Y. J.; Xia, S.-B.; Dong, P. Acta Chim. Sinica 2015, 73, 992 (in Chinese). |
[15] | (邱振平, 张英杰, 夏书标, 董鹏, 化学学报, 2015, 73, 992.) |
[16] | Nam, Y. J.; Oh, D. Y.; Jung, S. H.; Jung, Y. S. J. Power Sources 2018, 375, 93. |
[17] | Oh, D. Y.; Kim, D. H.; Jung, S. H.; Han, J.; Choi, N.; Jung, Y. S. Mater. Chem. A 2017, 5, 20771. |
[18] | Lee, Y.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S. Nat. Energy 2020, 5, 299. |
[19] | Zhao, X.; Lehto, V. P. Nanotechnology 2021, 32, 042002. |
[20] | Poetke, S.; Hippauf, F.; Baasner, A.; D?rfler, S.; Althues, H.; Kaskel, S. Batteries Supercaps 2021, 4, 1323. |
[21] | Poetke, S.; Cangaz, S.; Hippauf, F.; Haufe, S.; D?rfler, S.; Althues, H.; Kaskel, S. Energy Technol. 2023, 11, 2201330. |
[22] | Cangaz, S.; Hippauf, F.; Reuter, F. S.; Doerfler, S.; Abendroth, T.; Althues, H.; Kaskel, S. Adv. Energy Mater. 2020, 10, 2001320. |
[23] | Jun, S.; Nam, Y. J.; Kwak, H.; Kim, K. T.; Oh, D. Y.; Jung, Y. S. Adv. Funct. Mater. 2020, 30, 2002535. |
[24] | Qian, H.; Ren, H.; Zhang, Y. Electrochem. Energy Rev. 2022, 5, 2. |
[25] | Yu, R.; Wang, C.; Duan, H.; Jiang, M.; Zhang, A.; Fraser, A. Adv. Mater. 2023, 35, 2207234. |
[26] | Myung, S. T.; Maglia, F.; Park, K. J.; Yoon, C. S.; Lamp, P.; Chong, S. Y.; Sun, Y. K. ACS Energy Lett. 2017, 58, 196. |
[27] | Visbal, H.; Fujiki, S.; Aihara, Y.; Watanabe, T.; Park, Y.; Doo, S. J. Power Sources 2014, 269, 396. |
[28] | Ito, S.; Fujiki, S.; Yamada, T.; Aihara, Y.; Park, Y.; Kim, T. Y. J. Power Sources 2014, 248, 943. |
[29] | Visbal, H.; Aihara, Y.; Ito, S.; Watanabe, T.; Park, Y.; Doo, S. J. Power Sources 2016, 314, 85. |
[30] | Ulissi, U.; Agostini, M.; Ito, S.; Aihara, Y.; Hassoun, J. Solid State Ion. 2016, 296, 13. |
[31] | Xing, X.; Li, Y.; Wang, S.; Liu, H.; Wu, Z.; Yu, S.; Holoubek, J.; Zhou, H.; Liu, P. ACS Energy Lett. 2021, 6, 1831. |
[32] | Huang, Q.; Song, J.; Gao, Y.; Wang, D.; Wang, D. Nat. Commun. 2019, 10, 5586. |
[33] | Harpak, N.; Davidi, G.; Schneier, D.; Menkin, S.; Mados, E.; Golodnitsky, D.; Peled, E. Nano Lett. 2019, 19, 944. |
[34] | Dan, S.; Harpak, N.; Menkin, S.; Davidi, G.; Goor, M.; Mados, E. J. Electrochem. Soc. 2020, 167, 050511. |
[35] | Woo, M.; Didwal, P. N.; Kim, H.; Lim, J.; Nguyen, A.; Jin, C.; Chang, D. R.; Park, C. Appl. Surf. Sci. 2021, 568, 150934. |
[36] | Li, J.; Feng, Y.; Zhu, J.; Mo, C.; Cai, Q.; Liao, Y.; Li, W. ACS Appl. Mater. Interfaces 2022, 14, 36656. |
[37] | Yuan, Z.-X.; Zhang, H.; Hu, S.-J.; Zhang, B.-T.; Zhang, J.-J.; Cui, G.-L. Acta Chim. Sinica 2023, 81, 1064 (in Chinese). |
[37] | (苑志祥, 张浩, 胡思伽, 张波涛, 张建军, 崔光磊, 化学学报, 2023, 81, 1064.) |
[38] | Li, X.; Qian, K.; He, Y.; Liu, C.; An, D.; Li, Y. J. Mater. Chem. A 2017, 10, 1039. |
[39] | Shen, Z.; Zhong, J.; Jiang, S.; Xie, W.; Zhan, S.; Lin, K.; Zeng, L.; Hu, H.; Lin, G.; Lin, Y.; Sun, S.; Shi, Z. ACS Appl. Mater. Interfaces 2022, 14, 41022. |
[40] | Zhao, E.; Luo, S.; Gu, Y.; Yang, L.; Hirano, S. I. ACS Appl. Mater. Interfaces 2021, 13, 59843. |
[41] | Zhao, E.; Luo, S.; Zhang, Z.; Saito, N.; Yang, L.; Hirano, S. I. Electrochim. Acta 2022, 434, 141299. |
[42] | Yee, M.; An, K.; Nguyen, D. T.; Yun, H. W.; Park, J.; Suk, J.; Song, S. W. Mater. Today Energy 2022, 24, 100950. |
[43] | Lu, Q.; Wang, C.; Bao, D.; Duan, H.; Zhao, F.; Doyle-Davis, K.; Zhang, Q.; Wang, R.; Zhao, S.; Wang, J.; Huang, H.; Sun, X. Energy Environ. Mater. 2023, 12447. |
[44] | Zhu, T.; Liu, G.; Chen, D.; Chen, J.; Qi, P.; Sun, J.; Gu, X.; Zhang, S. Energy Storage Mater. 2022, 50, 495. |
/
〈 |
|
〉 |