亲核性氟源在碳碳不饱和键选择性氟化官能化反应中的应用
收稿日期: 2023-08-10
网络出版日期: 2023-09-18
基金资助
国家自然科学基金(22271151); 江苏省杰出青年基金资助
Applications of Nucleophilic Fluorine Sources in the Selective Fluorofunctionalization of Unsaturated Carbon-Carbon Bonds
Received date: 2023-08-10
Online published: 2023-09-18
Supported by
National Natural Science Foundation of China(22271151); Distinguished Youth Foundation of Jiangsu Province
含氟化合物表现出的特殊理化和生物活性使得其在药物、农用化学品和材料科学等领域有着广泛而重要的应用, 因此, 含氟化合物的高效制备不仅成为了合成化学的研究热点之一, 而且极大地推动了相关领域的蓬勃发展. 其中, 在有机分子内直接引入氟原子的方法主要有亲电氟化和亲核氟化. 相较于亲电氟化, 亲核氟化反应所用的氟化试剂通常廉价易得, 所需的反应条件也比较温和. 作者课题组借助过渡金属催化、可见光氧化还原催化和可见光促进策略, 拓展了亲核性氟源在碳碳不饱和键选择性氟化官能化反应中的应用, 合成了一系列结构新颖的含氟化合物. 在该研究评论中将对此做出小结, 并对该领域值得关注的研究方向进行简要的展望.
王成强 , 冯超 . 亲核性氟源在碳碳不饱和键选择性氟化官能化反应中的应用[J]. 化学学报, 2024 , 82(2) : 160 -170 . DOI: 10.6023/A23080373
Introduction of fluorine into organic molecules often causes significant changes in their physical, chemical and biological properties, which result in the wide application of fluorine-containing compounds in many fields of chemistry such as drug discovery, agrochemical development and material science. As a consequence, rapid assembly of fluorinated structures has become one of the most popular research topics in the past decade, which also propelled eminent breakthroughs in related areas. Generally, fluorination methods could be divided into two types according to the fluorinating reagent used, i.e., electrophilic fluorination and nucleophilic fluorination. Compared with electrophilic fluorination, the reagents used in nucleophilic fluorination are usually advantageous in economy and availability. In addition, mild conditions employed in nucleophilic fluorination also result in wide substrate scope and excellent functional group compatibility. By resorting to transition- metal and photoredox catalysis, as well as visible light promoted reactions, the authors’ research group has recently established a series of selective fluorofunctionalization of unsaturated carbon-carbon bonds with nucleophilic fluorine sources, affording a panel of structurally novel fluorine(s)-embedded molecules. In this account, the authors have systematically summarized their recent work in this area, challenges and directions which deserve future endeavors in this field are also discussed.
[1] | Hu, J.; Ding, K. Acta Chim. Sinica 2018, 76, 905. (in Chinese) |
[1] | (胡金波, 丁奎岭, 化学学报, 2018, 76, 905.) |
[2] | (a) Haufe, G.; Leroux, F. R. Fluorine in Life Sciences: Pharmaceutical, Medicinal Diagnostics, and Agrochemicals, Elsevier, Amsterdam, 2019. |
[2] | (b) Qing, F.-L.; Liu, X.-Y.; Ma, J.-A.; Shen, Q.; Song, Q.; Tang, P. CCS Chem. 2022, 4, 2518. |
[2] | (c) Zhang, C.; Yan, K.; Fu, C.; Peng, H.; Hawker, C. J.; Whittaker, A. K. Chem. Rev. 2022, 122, 167. |
[3] | Liu, J. Chemistry 2001, 60. (in Chinese) |
[3] | (刘金涛, 化学通报, 2001, 60.) |
[4] | (a) Taylor, S. D.; Kotoris, C. C.; Hum, G. Tetrahedron 1999, 55, 12431. |
[4] | (b) Singh, R. P.; Shreeve, J. M. Acc. Chem. Res. 2004, 37, 31. |
[4] | (c) Jiang, Y.; Liu, Z. Chin. J. Org. Chem. 2009, 29, 1362. (in Chinese) |
[4] | (姜永莉, 刘兆鹏, 有机化学, 2009, 29, 1362.) |
[4] | (d) Yang, L.; Dong, T.; Revankar, H. M.; Zhang, C.-P. Green Chem. 2017, 19, 3951. |
[4] | (e) Testa, C.; Roger, J.; Fleurat-Lessard, P.; Hierso, J.-C. Eur. J. Org. Chem. 2019, 233. |
[4] | (f) Umemoto, T.; Yang, Y.; Hammond, G. B. Beilstein J. Org. Chem. 2021, 17, 1752. |
[4] | (g) Rozatian, N.; Hodgson, D. R. W. Chem. Commun. 2021, 57, 683. |
[4] | (h) Zou, Z.; Zhang, W.; Wang, Y.; Pan, Y. Org. Chem. Front. 2021, 8, 2786. |
[5] | (a) Hollingworth, C.; Gouverneur, V. Chem. Commun. 2012, 48, 2929. |
[5] | (b) Liang, S.; Hammond, G. B.; Xu, B. Chem. Eur. J. 2017, 23, 17850. |
[5] | (c) See, Y. Y.; Morales-Colón, M. T.; Bland, D. C.; Sanford, M. S. Acc. Chem. Res. 2020, 53, 2372. |
[5] | (d) Fuchigami, T.; Inagi, S. Acc. Chem. Res. 2020, 53, 322. |
[5] | (e) Oh, Y.-H.; Kim, D. W.; Lee, S. Molecules 2022, 27, 5702. |
[5] | (f) Leibler, I. N.-M.; Gandhi, S. S.; Tekle-Smith, M. A.; Doyle, A. G. J. Am. Chem. Soc. 2023, 145, 9928. |
[6] | (a) Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413. |
[6] | (b) Zeng, Y.; Hu, J. Synthesis 2016, 48, 2137. |
[6] | (c) Wu, Z.; Zhang, W. Chin. J. Org. Chem. 2017, 37, 2250. (in Chinese) |
[6] | (吴正兴, 张万斌, 有机化学, 2017, 37, 2250.) |
[6] | (d) Ren, X.; Lu, Z. Chin. J. Catal. 2019, 40, 1003. |
[6] | (e) Li, Y.; Wu, D.; Cheng, H.-G.; Yin, G. Angew. Chem. Int. Ed. 2020, 59, 7990. |
[6] | (f) Li, Z.-L.; Fang, G.-C.; Gu, Q.-S.; Liu, X.-Y. Chem. Soc. Rev. 2020, 49, 32. |
[6] | (g) Xu, L.; Wang, F.; Chen, F.; Zhu, S.; Chu, L. Chin. J. Org. Chem. 2022, 42, 1. (in Chinese) |
[6] | (徐磊, 王方, 陈凡, 朱圣卿, 储玲玲, 有机化学, 2022, 42, 1.) |
[7] | (a) Liu, G. Org. Biomol. Chem. 2012, 10, 6243. |
[7] | (b) Wolstenhulme, J. R.; Gouverneur, V. Acc. Chem. Res. 2014, 47, 3560. |
[7] | (c) Xu, X.-H.; Qing, F.-L. Curr. Org. Chem. 2015, 19, 1566. |
[7] | (d) McKnight, E. A.; Cadwallader, D.; Le, C. M. Eur. J. Org. Chem. 2023, e202300017. |
[8] | Uneyama, K.; Katagiri, T.; Amii, A. H. Acc. Chem. Res. 2008, 41, 817. |
[9] | Gao, B.; Zhao, Y.; Ni, C.; Hu, J. Org. Lett. 2014, 16, 102. |
[10] | Gao, B.; Zhao, Y.; Hu, J. Angew. Chem. Int. Ed. 2015, 54, 638. |
[11] | Tian, P.; Wang, C.-Q.; Cai, S.-H.; Song, S.; Ye, L.; Feng, C.; Loh, T.-P. J. Am. Chem. Soc. 2016, 138, 15869. |
[12] | Tang, H.-J.; Lin, L.-Z.; Feng, C.; Loh, T.-P. Angew. Chem. Int. Ed. 2017, 56, 9872. |
[13] | Daniel, P. E.; Onyeagusi, C. I.; Ribeiro, A. A.; Li, K.; Malcolmson, S. J. ACS Catal. 2019, 9, 205. |
[14] | Qi, S.; Gao, S.; Xie, X.; Yang, J.; Zhang, J. Org. Lett. 2020, 22, 5229. |
[15] | Lin, T.-Y.; Pan, Z.; Tu, Y.; Zhu, S.; Wu, H.-H.; Liu, Y.; Li, Z.; Zhang, J. Angew. Chem. Int. Ed. 2020, 59, 22957. |
[16] | Tang, H.-J.; Zhang, Y.-F.; Jiang, Y.-W.; Feng, C. Org. Lett. 2018, 20, 5190. |
[17] | Liu, H.; Ge, L.; Wang, D.-X.; Chen, N.; Feng, C. Angew. Chem. Int. Ed. 2019, 58, 3918. |
[18] | Liu, H.; Li, Y.; Wang, D.-X.; Sun, M.-M.; Feng, C. Org. Lett. 2020, 22, 8681. |
[19] | (a) Tang, H.-J.; Zhang, X.; Zhang, Y.-F.; Feng, C. Angew. Chem. Int. Ed. 2020, 59, 5242. |
[19] | (b) Zhang, F.; Ma, J. Chin. J. Org. Chem. 2020, 40, 1082. (in Chinese) |
[19] | (张发光, 马军安, 有机化学, 2020, 40, 1082.) |
[20] | Tang, H.-J.; Zhang, B.; Xue, F.; Feng, C. Org. Lett. 2021, 23, 4040. |
/
〈 |
|
〉 |