α-手性三级叠氮化合物的不对称催化合成新进展★
收稿日期: 2023-07-28
网络出版日期: 2023-10-08
基金资助
国家自然科学基金(21971067); 国家自然科学基金(22171087); 上海市教育委员会科研创新计划(2023ZKZD37); 上海市科技创新行动计划(20JC1416900); 上海市科技创新行动计划(21N41900500)
Recent Advances in Catalytic Enantioselective Synthesis of α-Chiral Tertiary Azides★
Received date: 2023-07-28
Online published: 2023-10-08
Supported by
National Natural Science Foundation of China(21971067); National Natural Science Foundation of China(22171087); Innovation Program of Shanghai Municipal Education Commission(2023ZKZD37); Shanghai Science and Technology Innovation Action Plan(20JC1416900); Shanghai Science and Technology Innovation Action Plan(21N41900500)
α-手性叠氮化合物广泛应用于合成化学、药物化学和生命科学等领域. 由于手性叠氮既可用于多样性合成手性胺衍生物及含氮杂环化合物, 且叠氮基本身也是药效团, α-手性叠氮的高效合成对于药物研发十分重要. 随着引入手性季碳来增加分子的三维立体性来改善生物活性和成药性成为药物设计研发的有效手段, 发展具有氮杂季碳手性中心的α-手性三级叠氮的不对称催化合成新方法来促进药学研究十分必要. 然而, 由于叠氮基接近于直线的结构所带来的不利位阻效应, 以及需要区分差异性较小的取代基来构建氮杂季碳手性中心的挑战性, 高对映选择性的不对称催化方法较为匮乏. 本综述旨在从含C—N3键化合物的不对称官能团化反应和通过C—N3键形成的不对称叠氮化反应两种构建策略出发, 介绍近五年不对称催化合成α-手性三级叠氮的研究进展. 藉此对反应机理及优势与不足等进行分析讨论, 为从事有机合成和药物化学相关的科研人员提供一些参考和启发.
高杨 , 张学鑫 , 余金生 , 周剑 . α-手性三级叠氮化合物的不对称催化合成新进展★[J]. 化学学报, 2023 , 81(11) : 1590 -1608 . DOI: 10.6023/A23070359
α-Chiral azides are widely used in the fields of synthetic chemistry, medicinal chemistry and life science. Owing to α-chiral azides can be used for the diverse synthesis of α-chiral amine derivatives and nitrogen-containing heterocycles, and its azido group is also a pharmacophore, the efficient synthesis of α-chiral azides is highly important for drug discovery and development. Along with the incorporation of chiral quaternary carbon that can increase the three-dimensional stereospecificity of molecules has become an effective strategy to improve the bioactivity and druggability in drug design and development, the development of catalytic asymmetric synthetic methods toward α-chiral tertiary azides featuring aza-quaternary carbon center is highly desirable to facilitate drug research. However, due to the adverse steric effects caused by the structure of azido group that is close to a straight line, and the challenge of distinguishing the substituents with less difference to construct the aza-quaternary carbon stereocenter, the catalytic asymmetric protocols with high enantioselectivity are relatively scarce. This review aims to summarize the advances of the past five years according to the following two strategies: asymmetric functionalizations of C—N3 bond containing compounds and asymmetric azidations involving C—N3 bond forming, as well as discusses the possible reaction mechanism, the advantages and disadvantages of different reactions, which would provide some references and inspiration for researchers engaged in organic synthesis and medicinal chemistry.
| [1] | (a) Grie? P. Justus Liebigs Ann. Chem. 1865, 135, 131. |
| [1] | (b) Grie? P. Philos. Trans. R. Soc. London, 1864, 13, 377. |
| [2] | (a) Boyer J. H.; Canter F. C. Chem. Rev. 1954, 54, 1. |
| [2] | (b) L’abbé. G. Chem. Rev. 1969, 69, 345. |
| [2] | (c) Scriven E. F. V.; Turnbull K. Chem. Rev. 1988, 88, 297. |
| [2] | (d) Br?se S.; Gil C.; Knepper K.; Zimmermann V. Angew. Chem., Int. Ed. 2005, 44, 5188. |
| [2] | (e) Lang S.; Murphy J. A. Chem. Soc. Rev. 2006, 35, 146. |
| [2] | (f) Fu J.; Zanoni G.; Anderson E. A.; Bi X. Chem. Soc. Rev. 2017, 46, 7208. |
| [2] | (g) Sivaguru P.; Ning Y.; Bi X. Chem. Rev. 2021, 121, 4253. |
| [2] | (h) Br?se S.; Banert K. Organic Azides: Syntheses and Applications, Wiley, 2009. |
| [3] | (a) Meldal M.; Torn?e C. W. Chem. Rev. 2008, 108, 2952. |
| [3] | (b) Mamidyala S. K.; Finn M. G. Chem. Soc. Rev. 2010, 39, 1252. |
| [3] | (c) Golas P. L.; Matyjaszewski K. Chem. Soc. Rev. 2010, 39, 1338. |
| [3] | (d) Tiwari V. K.; Mishra B. B.; Mishra K. B.; Mishra N.; Singh A. S.; Chen X. Chem. Rev. 2016, 116, 3086. |
| [3] | (e) Kacprzak K.; Skiera I.; Piasecka M.; Paryzek Z. Chem. Rev. 2016, 116, 5689. |
| [4] | Beenhouwer D. O.; Rankin J. A.; Mellors J. W. Antiviral Res. 1992, 19, 43. |
| [5] | Klumpp K.; Lévêque V.; Pogam S. L.; Ma H.; Jiang W.-R.; Kang H.; Granycome C.; Singer M.; Laxton C.; Hang J. Q.; Sarma K.; Smith D. B.; Heindl D.; Hobbs J. C.; Merrett J. H.; Symons J.; Cammack N.; Martin J. A.; Devos R.; Nájera I. J. Biol. Chem. 2006, 281, 3793. |
| [6] | Sun L.; Peng Y.; Yu W.; Zhang Y.; Liang L.; Song C.; Hou J.; Qiao Y.; Wang Q.; Chen J.; Wu M.; Zhang D.; Li E.; Han Z.; Zhao Q.; Jin X.; Zhang B.; Huang Z.; Chai J.; Wang J.-H.; Chang J. J. Med. Chem. 2020, 63, 8554. |
| [7] | (a) Lao Z.; Toy P. H. Beilstein J. Org. Chem. 2016, 12, 2577. |
| [7] | (b) Palacios F.; Alonso C.; Aparicio D.; Rubiales G.; Santos J. M. Tetrahedron 2007, 63, 523. |
| [7] | (c) Haldón E.; Nicasio M. C.; Pérez P. J. Org. Biomol. Chem. 2015, 13, 9528. |
| [7] | (d) Uchida T.; Katsuki T. Chem. Rec. 2014, 14, 117. |
| [7] | (e) Frost J. R.; Pearson C. M.; Snaddon T. N.; Booth R. A.; Turner R. M.; Gold J.; Shaw D. M.; Gaunt M. J.; Ley S. V. Chem. Eur. J. 2015, 21, 13261. |
| [8] | (a) Shibatomi K.; Soga Y.; Narayama A.; Fujisawa I.; Iwasa S. J. Am. Chem. Soc. 2012, 134, 9836. |
| [8] | (b) Bosmani A.; Pujari S. A.; Besnard C.; Guénée L.; Poblador-Bahamonde A. I.; Lacour J. Chem. Eur. J. 2017, 23, 8678. |
| [8] | (c) Fernández-Valparis J.; Romea P.; Urpí F.; Font-Bardia M. Org. Lett. 2017, 19, 6400. |
| [9] | (a) Ding P.-G.; Hu X.-S.; Zhou F.; Zhou J. Org. Chem. Front. 2018, 5, 1542. |
| [9] | (b) Ge L.; Chiou M.-F.; Li Y.; Bao H. Green Synth. Catal. 2020, 1, 86. |
| [9] | (c) Wei F.; Yu X.; Xiao Q. Chin. J. Org. Chem. 2023, 43, 1365. (in Chinese) |
| [9] | ( 魏芳, 余鑫, 肖强, 有机化学, 2023, 43, 1365.) |
| [10] | Liu Z.; Liao P.; Bi X. Org. Lett. 2014, 16, 3668. |
| [11] | (a) Wang Y.-F.; Toh K. K.; Ng E. P. J.; Chiba S. J. Am. Chem. Soc. 2011, 133, 6411. |
| [11] | (b) Wang Y.-F.; Toh K. K.; Lee J.-Y.; Chiba S. Angew. Chem., Int. Ed. 2011, 50, 5927. |
| [11] | (c) Jung N.; Br?se S. Angew. Chem., Int. Ed. 2012, 51, 12169. |
| [11] | (d) Xuan J.; Xia X.-D.; Zeng T.-T.; Feng Z.-J.; Chen J.-R.; Lu L.-Q.; Xiao W.-J. Angew. Chem., Int. Ed. 2014, 53, 5653. |
| [11] | (e) Farney E. P.; Yoon T. P. Angew. Chem., Int. Ed. 2014, 53, 793. |
| [11] | (f) Hu B.; DiMagno S. G. Org. Biomol. Chem. 2015, 13, 3844. |
| [11] | (g) Hayashi H.; Kaga A.; Chiba S. J. Org. Chem. 2017, 82, 11981. |
| [11] | (h) Ning Y.; Ji Q.; Liao P.; Anderson E. A.; Bi X. Angew. Chem., Int. Ed. 2017, 56, 13805. |
| [11] | (i) Ning Y.; Zhao X.-F.; Wu Y.-B.; Bi X. Org. Lett. 2017, 19, 6240. |
| [11] | (j) Kanchupalli V.; Katukojvala S.; Angew. Chem., Int. Ed. 2018, 57, 5433. |
| [11] | (k) Zhong Z.; Xiao Z.; Liu X.; Cao W.; Feng X. Chem. Sci. 2020, 11, 11492. Also see ref. 2f. |
| [12] | (a) Gu P.; Su Y.; Wu X. P.; Sun J.; Liu W.; Xue P.; Li R. Org. Lett. 2012, 14, 2246. |
| [12] | (b) López E.; López L. A. Angew. Chem., Int. Ed. 2017, 56, 5121. |
| [13] | Thirupathi N.; Wei F.; Tung C.-H.; Xu Z. Nat. Commun. 2019, 10, 3158. |
| [14] | Nakanishi T.; Kikuchi J.; Kaga A.; Chiba S.; Terada M. Chem. Eur. J. 2020, 26, 8230. |
| [15] | Chowdari N. S.; Ahmad M.; Albertshofer K.; Tanaka F.; Barbas C. F. Org. Lett. 2006, 8, 2839. |
| [16] | Martínez-Casta?eda á.; K?dziora K.; Lavandera I.; Rodríguez- Solla H.; Concellón C.; Amo V. Chem. Commun. 2014, 50, 2598. |
| [17] | McNulty J.; Zepeda-Velázquez C. Angew. Chem., Int. Ed. 2014, 53, 8450. |
| [18] | (a) Weidner K.; Sun Z.; Kumagai N.; Shibasaki M. Angew. Chem., Int. Ed. 2015, 54, 6236. |
| [18] | (b) Sun Z.; Weidner K.; Kumagai N.; Shibasaki M. Chem. Eur. J. 2015, 21, 17574. |
| [18] | (c) Noda H.; Amemiya F.; Weidner K.; Kumagai N.; Shibasaki M. Chem. Sci. 2017, 8, 3260. |
| [19] | Okumu? S.; Tanyeli C.; Demir A. S. Tetrahedron Lett. 2014, 55, 4302. |
| [20] | Ye X.; Pan Y.; Yang X. Chem. Commun. 2020, 56, 98. |
| [21] | Karahan S.; Tanyeli C. Org. Biomol. Chem. 2020, 18, 479. |
| [22] | Ding P.-G.; Zhou F.; Wang X.; Zhao Q.-H.; Yu J.-S.; Zhou J. Chem. Sci. 2020, 11, 3852. |
| [23] | Ding P.-G.; Hu X.-S.; Yu J.-S.; Zhou J. Org. Lett. 2020, 22, 8578. |
| [24] | For a review: (a) Wang C.; Zhou F.; Zhou J. Chin. J. Org. Chem. 2020, 40, 3065. (in Chinese) |
| [24] | 王才, 周锋, 周剑, 有机化学, 2020, 40, 3065.) |
| [24] | For selected examples: (b) Meng J.; Fokin V. V.; Finn M. G. Tetrahedron Lett. 2005, 46, 4543. |
| [24] | (c) Alexander J. R.; Ott A. A.; Liu E.-C.; Topczewski J. J. Org. Lett. 2019, 21, 4355. |
| [24] | (d) Liu E.-C.; Topczewski J. J. J. Am. Chem. Soc. 2019, 141, 5135. |
| [25] | Yang X.; Birman V. B. Chem. Eur. J. 2011, 17, 11296. |
| [26] | Ott A. A.; Goshey C. S.; Topczewski J. J. J. Am. Chem. Soc. 2017, 139, 7737. |
| [27] | Ye P.; Feng A.; Wang L.; Cao M.; Zhu R.; Liu L. Nat. Commun. 2022, 13, 1621. |
| [28] | Gong Y.; Wang C.; Zhou F.; Liao K.; Wang X.-Y.; Sun Y.; Zhang Y.-X.; Tu Z.; Wang X.; Zhou J. Angew. Chem., Int. Ed. 2023, 62, e202301470. |
| [29] | (a) Zhu R.-Y.; Chen L.; Hu X.-S.; Zhou F.; Zhou J. Chem. Sci. 2020, 11, 97. |
| [29] | (b) Liao K.; Gong Y.; Zhu R.-Y.; Wang C.; Zhou F.; Zhou J. Angew. Chem., Int. Ed. 2021, 60, 8488. |
| [30] | (a) Zhdankin V. V. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Application of Polyvalent Iodine Compounds, John Wiley & Sons Ltd., New York, 2014. |
| [30] | (b) Yoshimura A.; Zhdankin V. V. Chem. Rev. 2016, 116, 3328. |
| [31] | (a) Simonet-Davin R.; Waser J. Synthesis 2023, 55, 1652. |
| [31] | (b) Mironova I. A.; Kirsch S. F.; Zhdankin V. V.; Yoshimura A.; Yusubov M. S. Eur. J. Org. Chem. 2022, 2022, e202200754. |
| [32] | Deng Q.-H.; Bleith T.; Wadepohl H.; Gade L. H. J. Am. Chem. Soc. 2013, 135, 5356. |
| [33] | Wang C.-J.; Sun J.; Zhou W.; Xue J.; Ren B.-T.; Zhang G.-Y.; Mei Y.-L.; Deng Q.-H. Org. Lett. 2019, 21, 7315. |
| [34] | Lin C.-Z.; Jiang L.-F.; Zhang G.-Y.; Zhou F.-S.; Wu S.-H.; Jing C.; Deng Q.-H. Chem. Commun. 2023, 59, 7831. |
| [35] | Chen Y.-X.; Huo T.; Yin Q.; Jiang L.-F.; Cheng X.; Ma H.-X.; Jiang Y.-X.; Sun M.-Z.; Deng Q.-H. Org. Lett. 2023, 25, 2739. |
| [36] | He C.; Wu Z.; Zhou Y.; Cao W.; Feng X. Org. Chem. Front. 2022, 9, 703. |
| [37] | Tiffner M.; Stockhammer L.; Sch?rgenhumer J.; R?ser K.; Waser M. Molecules 2018, 23, 1142. |
| [38] | Examples for constructing of α-chiral secondary azides using NaN3: (a) Taylor M. S.; Zalatan D. N.; Lerchner A. M.; Jacobsen E. N. J. Am. Chem. Soc. 2005, 127, 1313. |
| [38] | (b) Huang X.; Bergsten T. M.; Groves J. T. J. Am. Chem. Soc. 2015, 137, 5300. |
| [39] | Gomes R. S.; Corey E. J. J. Am. Chem. Soc. 2019, 141, 20058. |
| [40] | Zhang X.; Ren J.; Tan S. M.; Tan D.; Lee R.; Tan C.-H. Science 2019, 363, 400. |
| [41] | Ren J.; Ban X.; Zhang X.; Tan S. M.; Lee R.; Tan C.-H. Angew. Chem., Int. Ed. 2020, 59, 9055. |
| [42] | Uyanik M.; Sahara N.; Tsukahara M.; Hattori Y.; Ishihara K. Angew. Chem., Int. Ed. 2020, 59, 17110. |
| [43] | Cao M.; Wang H.; Ma Y.; Tung C.-H.; Liu L. J. Am. Chem. Soc. 2022, 144, 15383. |
| [44] | Wu J.-F.; Wan N.-W.; Li Y.-N.; Wang Q.-P.; Cui B.-D.; Han W.-Y.; Chen Y.-Z. iScience 2021, 24, 102883. |
| [45] | Zhou P.; Lin L.; Chen L.; Zhong X.; Liu X.; Feng X. J. Am. Chem. Soc. 2017, 139, 13414. |
| [46] | Seidl F. J.; Min C.; Lopez J. A.; Burns N. Z. J. Am. Chem. Soc. 2018, 140, 15646. |
| [47] | Wu L.; Zhang Z.; Wu D.; Wang F.; Chen P.; Lin Z.; Liu G. Angew. Chem., Int. Ed. 2021, 60, 6997. |
| [48] | Liu W.; Pu M.; He J.; Zhang T.; Dong S.; Liu X.; Wu Y.-D.; Feng X. J. Am. Chem. Soc. 2021, 143, 11856. |
/
| 〈 |
|
〉 |