研究论文

三氟氯乙烯与甲基异丙烯基醚的光诱导共聚反应

  • 易敬霖 ,
  • 陈茂
展开
  • 复旦大学 高分子科学系 聚合物分子工程国家重点实验室 上海 200433
庆祝《化学学报》创刊90周年.

收稿日期: 2023-08-21

  网络出版日期: 2023-10-08

基金资助

国家自然科学基金(22171051); 聚合物分子工程国家重点实验室的资助

Photo-Induced Copolymerization of Chlorotrifluoroethylene and Methyl Isopropenyl Ether

  • Jinglin Yi ,
  • Mao Chen
Expand
  • Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-08-21

  Online published: 2023-10-08

Supported by

National Natural Science Foundation of China(22171051); State Key Laboratory of Molecular Engineering of Polymers

摘要

氟聚合物综合性能优异, 在诸多领域发挥了重要作用. 三氟氯乙烯(chlorotrifluoroethylene, CTFE)与乙烯基醚共聚物被用于高性能涂料, 但其较低的玻璃化转变温度对应用场景带来了局限. 在本工作中, 发展了CTFE与甲基异丙烯基醚(methyl isopropenyl ether, MIE)的光照自由基共聚反应, 在室温常压条件下合成了全新化学结构的氟烯烃与烯基醚共聚物. 聚合反应过程符合一级动力学与交替共聚特征, 通过控制链转移剂用量与MIE转化率可合成不同分子量的共聚物, 表明该聚合反应具备一定的可控性, 但共聚物分子量分布较宽、链末端保真度有限. 在此基础上, 本工作首次揭示了CTFE-MIE共聚物比CTFE-乙烯基乙醚共聚物的玻璃化转变温度提高了近50 ℃, 有助于进一步开发高性能氟聚合物材料.

本文引用格式

易敬霖 , 陈茂 . 三氟氯乙烯与甲基异丙烯基醚的光诱导共聚反应[J]. 化学学报, 2024 , 82(2) : 126 -131 . DOI: 10.6023/A23080387

Abstract

Fluoropolymers exhibit unique properties, such as outstanding thermal stability and chemical inertness, ultralow surface energy, and have found broad applications in lots of areas. Many fluoropolymers show high crystallinity and low solubility, restricting their practical usage through melting and solution processing. To address such issues, copolymerization of fluoroalkenes and comonomers have been developed to prepare fluorinated copolymers that retain fluoroalkyl characteristics and good processibility, bringing many important commercial products, for example, copolymers of chlorotrifluoroethylene (CTFE) and vinyl ethers. However, such copolymers could possess low glass transition temperature (Tg), which is a key property to influence the applicable scope. In this work, we report copolymerization of CTFE and methyl isopropenyl ether (MIE) for the first time, which have enabled the synthesis of novel fluorinated copolymers under LED (light emitting diode) light irradiation conditions by merging an organic thermally activated delayed fluorescence catalyst and a redox active organic amine via a redox-relay catalysis. In comparison to conventional free radical (co)polymerization of fluoroalkenes, this method not only provides main-chain fluoropolymers of readily tunable molecular weights as evidenced by gel permeation chromatography (GPC) and multi-angle light scattering detection coupled with GPC (GPC-MALS), but also allows smooth transformation of fluoroalkene feedstock at ambient pressure using common Schlenk glassware without needing high-pressure metallic vessels. Although the obtained CTFE-MIE copolymers exhibited less controlled molecular weight distributions (MWDs) and limited chain-end fidelity as confirmed by chain-extension polymerization and GPC analysis, the chain-growth process presents first-order kinetics as validated by monitoring the monomer consumption, and follows alternating copolymerization as supported by the variation of degrees of polymerization (DPs) of both vinyl compounds along the light irradiation time, presenting improved chain-growth control as compared to conventional free radical transformation. Notably, as analyzed by differential scanning calorimetry (DSC), in contrast to copolymers of CTFE and ethyl vinyl ether (EVE), the CTFE-MIE copolymers with similar molecular weights exhibit clearly improved Tg of about 50 ℃ via simply introducing methyl substituents on the polymer backbone. Given the broad interests in fluoropolymers and established applications of fluoroalkene-vinyl ether copolymers, we believe that this work should be informative to the rational design of novel fluoropolymers and attractive for material engineering with improved thermal stability.

参考文献

[1]
Améduri, B. Chem. Eur. J. 2018, 24, 18830.
[2]
Scheirs, J. Modern fluoropolymers: High performance polymers for diverse applications, Wiley, New York, 1997.
[3]
Lv, J.; Cheng, Y. Chem. Soc. Rev. 2021, 50, 5435.
[4]
Yao, W.; Li, Y.; Huang, X. Polymer 2014, 55, 6197.
[5]
Xu, J.; Lv, J.; Zhuang, Q.; Yang, Z.; Cao, Z.; Xu, L.; Pei, P.; Wang, C.; Wu, H.; Dong, Z.; Chao, Y.; Wang, C.; Yang, K.; Peng, R.; Cheng, Y.; Liu, Z. Nat. Nanotechnol. 2020, 15, 1043.
[6]
Chen, Y.; Zhang, S.; Feng, C.; Zhang, Y.; Li, Q.; Li, W.; Huang, X. Chin. J. Chem. 2009, 27, 2261.
[7]
Puts, G. J.; Crouse, P.; Améduri, B. Chem. Rev. 2019, 119, 1763.
[8]
Ebnesajjad, S. Introduction to fluoropolymers: Materials, technology, and applications, Elsevier, Waltham, 2013.
[9]
Améduri, B. Macromolecules 2010, 43, 10163.
[10]
Hougham, G.; Cassidy, P.; Johns, K.; Davidson, J. Fluoropolymers: Synthesis and applications, Plenum, New York, 1999.
[11]
Gong, H.; Zhang, Y.; Cheng, Y.; Lei, M.; Zhang, Z. Chinese J. Polym. Sci. 2021, 39, 1110.
[12]
Qian, X.; Chen, X.; Zhu, L.; Zhang, Q. M. Science 2023, 380, eadg0902.
[13]
Yu, Q.; Wang, J.; Cheng, J.; Zhang, L.; Cheng, Z. Appl. Surf. Sci. 2023, 614, 156199.
[14]
Li, J.; Hu, X.; Gao, G.; Ding, S.; Li, H.; Yang, L.; Zhang, Z. J. Mater. Chem. C 2013, 1, 1111.
[15]
Tan, S.; Xiong, J.; Zhao, Y.; Liu, J.; Zhang, Z. J. Mater. Chem. C 2018, 6, 4131.
[16]
Mihel?i?, M.; Slemenik Per?e, L.; ?est, E.; Jerman, I.; Giuliani, C.; Di Carlo, G.; Lavorgna, M.; Surca, A. K. Prog. Org. Coat. 2018, 125, 266.
[17]
Munekata, S. Prog. Org. Coat. 1988, 16, 113.
[18]
Boschet, F.; Améduri, B. Chem. Rev. 2013, 114, 927.
[19]
Scheirs, J.; Burks, S.; Locaspi, A. Trends Polym. Sci. 1995, 3, 74.
[20]
Améduri, B.; Boutevin, B.; Kostov, G. Prog. Polym. Sci. 2001, 26, 105.
[21]
Vyazovkin, S.; Dranca, I. Thermochim. Acta 2006, 446, 140.
[22]
Metin, B.; Blum, F. D. J. Chem. Phys. 2006, 125, 054707.
[23]
An, Z.; Zhu, S.; An, Z. Polym. Chem. 2021, 12, 2357.
[24]
Cole, J. P.; Federico, C. R.; Lim, C.-H.; Miyake, G. M. Macromolecules 2019, 52, 747.
[25]
Discekici, E. H.; Anastasaki, A.; Kaminker, R.; Willenbacher, J.; Truong, N. P.; Fleischmann, C.; Oschmann, B.; Lunn, D. J.; Read de Alaniz, J.; Davis, T. P.; Bates, C. M.; Hawker, C. J. J. Am. Chem. Soc. 2017, 139, 5939.
[26]
Dadashi-Silab, S.; Matyjaszewski, K. ACS Macro Lett. 2019, 8, 1110.
[27]
Wu, C.; Chen, H.; Corrigan, N.; Jung, K.; Kan, X.; Li, Z.; Liu, W.; Xu, J.; Boyer, C. J. Am. Chem. Soc. 2019, 141, 8207.
[28]
Phommalysack-Lovan, J.; Chu, Y.; Boyer, C.; Xu, J. Chem. Commun. 2018, 54, 6591.
[29]
Yamago, S.; Nakamura, Y. Polymer 2013, 54, 981.
[30]
Ding, C.; Fan, C.; Jiang, G.; Pan, X.; Zhang, Z.; Zhu, J.; Zhu, X. Macromol. Rapid Commun. 2015, 36, 2181.
[31]
Xiao, Y.; Hu, W.; Xia, Z.; Shi, B.; Lü, C. Chin. J. Chem. 2023, 41, 2604.
[32]
Dadashi-Silab, S.; Doran, S.; Yagci, Y. Chem. Rev. 2016, 116, 10212.
[33]
Corrigan, N.; Yeow, J.; Judzewitsch, P.; Xu, J.; Boyer, C. Angew. Chem. Int. Ed. 2019, 58, 5170.
[34]
Chen, M.; Zhong, M.; Johnson, J. A. Chem. Rev. 2016, 116, 10167.
[35]
Li, S.; Han, G.; Zhang, W. Polym. Chem. 2020, 11, 1830.
[36]
Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875.
[37]
Whitfield, R.; Parkatzidis, K.; Rolland, M.; Truong, N. P.; Anastasaki, A. Angew. Chem. Int. Ed. 2019, 58, 13323.
[38]
Gao, Q.; Tu, K.; Li, H.; Zhang, L.; Cheng, Z. Sci. China Chem. 2021, 64, 1242.
[39]
Liu, X.; Ni, Y.; Wu, J.; Jiang, H.; Zhang, Z.; Zhang, L.; Cheng, Z.; Zhu, X. Polym. Chem. 2018, 9, 584.
[40]
Jiang, K.; Han, S.; Ma, M.; Zhang, L.; Zhao, Y.; Chen, M. J. Am. Chem. Soc. 2020, 142, 7108.
[41]
Quan, Q.; Ma, M.; Wang, Z.; Gu, Y.; Chen, M. Angew. Chem. Int. Ed. 2021, 60, 20443.
[42]
Quan, Q.; Zhao, Y.; Chen, K.; Zhou, H.; Zhou, C.; Chen, M. ACS Catal. 2022, 12, 7269.
[43]
Zhao, Y.; Chen, Y.; Zhou, H.; Zhou, Y.; Chen, K.; Gu, Y.; Chen, M. Nat. Synth. 2023, 2, 653.
[44]
Chen, K.; Zhou, Y.; Han, S.; Liu, Y.; Chen, M. Angew. Chem. Int. Ed. 2022, 61, e202116135.
[45]
Ma, M.; Shao, F.; Wen, P.; Chen, K.; Li, J.; Zhou, Y.; Liu, Y.; Jia, M.; Chen, M.; Lin, X. ACS Energy Lett. 2021, 6, 4255.
[46]
Carnevale, D.; Wormald, P.; Ameduri, B.; Tayouo, R.; Ashbrook, S. E. Macromolecules 2009, 42, 5652.
文章导航

/