基于蛋白质类淀粉样聚集的表面功能化★
收稿日期: 2023-06-01
网络出版日期: 2023-10-08
基金资助
国家杰出青年科学基金(52225301); 国家重点研发计划(2020YFA0710400); 国家重点研发计划(2020YFA0710402); 111计划(B14041); 中央高校基础研究基金(GK202305001); 陕西省创新能力支撑计划(2020TD-024); 陕西省国际科技合作项目(2022KWZ-24)
Surface Functionalization Based on Protein Amyloid-like Aggregation★
Received date: 2023-06-01
Online published: 2023-10-08
Supported by
National Science Foundation through Distinguished Young Scholars(52225301); National Key R&D Program of China(2020YFA0710400); National Key R&D Program of China(2020YFA0710402); 111 Project(B14041); Fundamental Research Funds for the Central Universities(GK202305001); Innovation Capability Support Program of Shaanxi Province(2020TD-024); International Science and Technology Cooperation Program of Shaanxi Province(2022KWZ-24)
表面改性在各个领域都扮演着重要的角色, 其在不改变材料本身性质的前提下, 赋予材料新的性能和更高的价值. 然而制约先进界面材料进一步应用发展的一个关键难题为缺少一种简单温和、高效环保和无色透明的普适性界面改性体系. 自类淀粉样蛋白质用于界面改性被报道以来, 该体系引起了学术界的广泛关注和研究, 一系列不同形态结构的蛋白质基材料如纳米薄膜、纳米纤维、大颗粒聚集体(产物)、水凝胶及气凝胶等被成功发展. 本综述首先阐述了蛋白质类淀粉样聚集的基本原理, 然后总结了蛋白质类淀粉样聚集作为表面改性体系在生物医用涂层、分离/透析、生物矿化、柔性电子、智能织物、化学催化和环境污染物去除等方向的应用, 最后指出该体系存在的不足并对未来发展方向进行了展望.
伏成玉 , 周星宇 , 杨鹏 . 基于蛋白质类淀粉样聚集的表面功能化★[J]. 化学学报, 2023 , 81(11) : 1566 -1576 . DOI: 10.6023/A23060266
Surface modification plays a pivotal role across various domains by conferring novel properties and heightened value to materials, all while preserving their inherent characteristics. However, a critical impediment stalling the broader utilization and advancement of advanced interface materials is the absence of a simple, environmentally friendly, universally applicable, colorless and transparent interface modification system. Since the initial reports of employing amyloid-like proteins for interface modification, this approach has garnered considerable attention and research within the academic community. Subsequently, an array of protein-based materials featuring diverse morphological structures such as nanofilms, nanofibers, large particle aggregates, hydrogels, aerogels, and more have emerged. This review commences by elucidating the fundamental principles underlying amyloid-like protein aggregation. Subsequently, it provides a comprehensive summary of its applications as a surface modification system in various domains including biomedical coatings, separation and dialysis, biomineralization, flexible electronics, smart fabrics, chemical catalysis and environmental pollutant removal. Furthermore, it discusses the current application directions and ultimately highlights the system's limitations, concluding with a prospective outlook on its future development.
Key words: surface/interface modification; amyloid-like protein; nanofilm
[1] | Liu Y.; Ai K.; Lu L. Chem. Rev. 2014, 114, 5057. |
[2] | Ejima H.; Richardson J. J.; Liang K.; Best J. P.; van Koeverden M. P.; Such G. K.; Cui J.; Caruso F. Science 2013, 341, 154. |
[3] | Barclay T. G.; Hegab H. M.; Clarke S. R.; Ginic-Markovic M. Adv. Mater. Interfaces 2017, 4, 19, |
[4] | Wang Z.; Yang H.-C.; He F.; Peng S.; Li Y.; Shao L.; Darling S. B. Matter 2019, 1, 115. |
[5] | Geng H.; Cui J.; Hao J. Acta Chim. Sinica 2020, 78, 105. (in Chinese) |
[5] | ( 耿慧敏, 崔基炜, 郝京诚, 化学学报, 2020, 78, 105.) |
[6] | Ryu J. H.; Messersmith P. B.; Lee H. ACS Appl. Mater. Interfaces 2018, 10, 7523. |
[7] | Lee H.; Dellatore S. M.; Miller W. M.; Messersmith P. B. Science 2007, 318, 426. |
[8] | Wei Q.; Haag R. Mater. Horiz. 2015, 2, 567. |
[9] | d'Ischia M.; Napolitano A.; Ball V.; Chen C. T.; Buehler M. J. Acc. Chem. Res. 2014, 47, 3541. |
[10] | Ye Q.; Zhou F.; Liu W. Chem. Soc. Rev. 2011, 40, 4244. |
[11] | Madhurakkat Perikamana S. K.; Lee J.; Lee Y. B.; Shin Y. M.; Lee E. J.; Mikos A. G.; Shin H. Biomacromolecules 2015, 16, 2541. |
[12] | Yang P.; Zhu F.; Zhang Z.; Cheng Y.; Wang Z.; Li Y. Chem. Soc. Rev. 2021, 50, 8319. |
[13] | Webber M. J.; Tibbitt M. W. Nat. Rev. Mater. 2022, 7, 541. |
[14] | Zhang C.; Xiang L.; Zhang J.; Liu C.; Wang Z.; Zeng H.; Xu Z. K. Chem. Sci. 2022, 13, 1698. |
[15] | Wu J.; Zhang L.; Wang Y.; Long Y.; Gao H.; Zhang X.; Zhao N.; Cai Y.; Xu J. Langmuir 2011, 27, 13684. |
[16] | Nam S.; Mooney D. Chem. Rev. 2021, 121, 11336. |
[17] | Liu B. W.; Zhao H. B.; Wang Y. Z. Adv. Mater. 2022, 34, e2107905. |
[18] | Li C.; Xu L.; Zuo Y. Y.; Yang P. Biomater. Sci. 2018, 6, 836. |
[19] | Gu J.; Su Y.; Liu P.; Li P.; Yang P. ACS Appl. Mater. Interfaces 2017, 9, 198. |
[20] | Wang D.; Ha Y.; Gu J.; Li Q.; Zhang L.; Yang P. Adv. Mater. 2016, 28, 7414. |
[21] | Wu Z.; Yang P. Adv. Mater. Interfaces 2015, 2, 1400401. |
[22] | Tao F.; Han Q.; Liu K.; Yang P. Angew. Chem., Int. Ed. 2017, 56, 13440. |
[23] | Han Q.; Tao F.; Xu Y.; Su H.; Yang F.; Korstgens V.; Muller-Buschbaum P.; Yang P. Angew. Chem., Int. Ed. 2020, 59, 20192. |
[24] | Yang Q.-M.; Liu Y.-C.; Chen L.-X.; Yang P. Acta Polym. Sin. 2020, 51, 890. (in Chinese) |
[24] | ( 杨庆敏, 刘永春, 陈立新, 杨鹏, 高分子学报, 2020, 51, 890.) |
[25] | Liu Y.; Tao F.; Miao S.; Yang P. Acc. Chem. Res. 2021, 54, 3016. |
[26] | Fitzpatrick A. W.; Debelouchina G. T.; Bayro M. J.; Clare D. K.; Caporini M. A.; Bajaj V. S.; Jaroniec C. P.; Wang L.; Ladizhansky V.; Muller S. A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 5468. |
[27] | Ye X.; Shao C.; Fan Q.; Shang L.; Ye F. J. Colloid Interface Sci. 2021, 604, 737. |
[28] | Hu X.; Tian J.; Li C.; Su H.; Qin R.; Wang Y.; Cao X.; Yang P. Adv. Mater. 2020, 32, e2000128. |
[29] | Sturm Nee Rosseeva E. V.; Colfen H. Chem. Soc. Rev. 2016, 45, 5821. |
[30] | Mulaj M.; Foley J.; Muschol M. J. Am. Chem. Soc. 2014, 136, 8947. |
[31] | Tao F.; Han Q.; Yang P. Langmuir 2019, 35, 183. |
[32] | Eisenberg D.; Weiss R.; Terwilliger T. Nature 1982, 299, 5881. |
[33] | Gao A.; Wu Q.; Wang D.; Ha Y.; Chen Z.; Yang P. Adv. Mater. 2016, 28, 579. |
[34] | Li J.; Tian J.; Gao Y.; Qin R.; Pi H.; Li M.; Yang P. Chem. Eng. J. 2021, 410, 128347. |
[35] | Liu R.; Zhao J.; Han Q.; Hu X.; Wang D.; Zhang X.; Yang P. Adv. Mater. 2018, 30, e1802851. |
[36] | Zhao J.; Qu Y.; Chen H.; Xu R.; Yu Q.; Yang P. J. Mater. Chem. B 2018, 6, 4645. |
[37] | Shen Y.; Posavec L.; Bolisetty S.; Hilty F. M.; Nystrom G.; Kohlbrecher J.; Hilbe M.; Rossi A.; Baumgartner J.; Zimmermann M. B. Nat. Nanotechnol. 2017, 12, 642. |
[38] | Yang F.; Yang Q.; Chen M.; Luo C.; Chen W.; Yang P. Cell Rep. Phys. Sci. 2021, 2, 100379. |
[39] | Chang M.; Fan S.; Lu R.; Tao F.; Yang F.; Han Q.; Liu J.; Yang P. ACS Appl. Mater. Interfaces 2021, 13, 42451. |
[40] | Chen J.; Xu M.; Wang L.; Li T.; Li Z.; Wang T.; Li P. Colloids Surf., B 2022, 219, 112854. |
[41] | Peydayesh M.; Suter M. K.; Bolisetty S.; Boulos S.; Handschin S.; Nystrom L.; Mezzenga R. Adv. Mater. 2020, 32, e1907932. |
[42] | Diaz-Gomez L.; Concheiro A.; Alvarez-Lorenzo C. Appl. Surf. Sci. 2018, 452, 32. |
[43] | Zhang W.; Lu X.; Yuan Z.; Shen M.; Song Y.; Liu H.; Deng J.; Zhong X.; Zhang X. Int. J. Nanomed. 2019, 14, 977. |
[44] | Lu X.; Zhang W.; Liu Z.; Ma S.; Sun Y.; Wu X.; Zhang X.; Gao P. Med. Sci. Monit. 2019, 25, 2658. |
[45] | Peng Y.; Yang J.; Fu W.; Gao Q.; Yao S.; Peng C.; Hou S. Mater. Today Adv. 2022, 14, 100232. |
[46] | He W.; Wang X.; Hang T.; Chen J.; Wang Z.; Mosselhy D. A.; Xu J.; Wang S.; Zheng Y. Carbohydr. Polym. 2023, 309, 120681. |
[47] | Xu K.; Cai K. Mater. Lett. 2019, 247, 95. |
[48] | Yao S.; Jin B.; Liu Z.; Shao C.; Zhao R.; Wang X.; Tang R. Adv. Mater. 2017, 29, 1605903. |
[49] | Ye Y.; Lu R.; Ren H.; Yang Y.; Li T.; Zhang X.; Yang P.; Zhang X. Mater. Des. 2023, 226, 111654. |
[50] | Ha Y.; Yang J.; Tao F.; Wu Q.; Song Y.; Wang H.; Zhang X.; Yang P. Adv. Funct. Mater. 2018, 28, 1704476. |
[51] | Yang J.; Zhang K.; Que K.; Hou S.; Chen Z.; Li Y.; Wang Y.; Song Y.; Guan B.; Zhang W. Mater. Sci. Eng., C 2018, 92, 206. |
[52] | Gao Y.; Pang Y.; Wei S.; Han Q.; Miao S.; Li M.; Tian J.; Fu C.; Wang Z.; Zhang X. ACS Appl. Mater. Interfaces 2023, 15, 10426. |
[53] | Ding Y.; Yuan Z.; Liu P.; Cai K.; Liu R. Mater. Sci. Eng., C 2020, 111, 110851. |
[54] | Li Y.; Fu Y.; Zhang H.; Wang X.; Chen T.; Wu Y.; Xu X.; Yang S.; Ji P.; Song J. Adv. Healthcare Mater. 2022, 11, e2102807. |
[55] | Li C.; Lu D.; Deng J.; Zhang X.; Yang P. Adv. Mater. 2019, 31, e1903973. |
[56] | Wang Z.; Fu C.; Gao Y.; Wu Z.; Chen W.; Hu B.; Xu S.; Zhang Z.; Yang P. Colloids Surf., B 2023, 225, 113239. |
[57] | Fu C.; Wang Z.; Gao Y.; Zhao J.; Liu Y.; Zhou X.; Qin R.; Pang Y.; Hu B.; Zhang Y. Nat. Sustain. 2023, 6, 984. |
[58] | Zhang N.; Deng Z.; Wang Q.; Zhou M.; Wang P.; Yu Y. Chem. Eng. J. 2022, 432, 134198. |
[59] | Zhang N.; Zhu X.; Wang Q.; Zhou M.; Wang P.; Yu Y. Int. J. Biol. Macromol. 2022, 217, 552. |
[60] | Zhang N.; Wang W.; Zhou M.; Yu Y.; Wang P.; Wang Q. Ind. Crops Prod. 2023, 198, 116637. |
[61] | Qin R.; Liu Y.; Tao F.; Li C.; Cao W.; Yang P. Adv. Mater. 2019, 31, e1803377. |
[62] | Luo Y.; Abidian M. R.; Ahn J.-H.; Akinwande D.; Andrews A. M.; Antonietti M.; Bao Z.; Berggren M.; Berkey C. A.; Bettinger C. J. ACS Nano 2023, 17, 5211. |
[63] | Ha Y.; Shi L.; Chen Z.; Wu R. Adv. Sci. 2019, 6, 1900272. |
[64] | Saif B.; Zhang W.; Zhang X.; Gu Q.; Yang P. ACS Nano 2019, 13, 7736. |
[65] | Ha Y.; Shi L.; Yan X.; Chen Z.; Li Y.; Xu W.; Wu R. ACS Appl. Mater. Interfaces 2019, 11, 45546. |
[66] | Zhu T.-T.; Xu P.; Gao Y.-X.; Yu S.-S.; Liu D.-F.; Yu H.-Q. ACS ES&T Water 2022, 2, 2716. |
[67] | Fang J.; Liu G.; Chen C.; Lin C.; Zhang B.; Jin H.; Chen Y.; Lu J.; Zhu L. Sep. Purif. Technol. 2021, 254, 117585. |
[68] | Yang F.; Tao F.; Li C.; Gao L.; Yang P. Nat. Commun. 2018, 9, 5443. |
[69] | Remanan S.; Samantaray P. K.; Bose S.; Das N. C. Microporous Mesoporous Mater. 2021, 316, 110945. |
[70] | Liang C.; Qin S.; Ai H.; Li S.; Du K. Chem. Eng. J. 2022, 441, 136005. |
[71] | Li M.; Chen M.; Yang F.; Qin R.; Yang Q.; Ren H.; Liu H.; Yang P. Adv. Healthcare Mater. 2023, e2300999. |
[72] | Yang F.; Yan Z.; Zhao J.; Miao S.; Wang D.; Yang P. J. Mater. Chem. A 2020, 8, 3438. |
[73] | Yang Q.; Cao J.; Yang F.; Liu Y.; Chen M.; Qin R.; Chen L.; Yang P. Chem. Eng. J. 2021, 416, 129066. |
[74] | Zhao J.; Li Q.; Miao B.; Pi H.; Yang P. Small 2020, 16, e2000043. |
[75] | Zhao J.; Miao B.; Yang P. ACS Appl. Mater. Interfaces 2020, 12, 35435. |
[76] | Song P.; Zhang J.; Li Y.; Liu G.; Li N. Acta Chim. Sinica 2022, 80, 690. (in Chinese) |
[76] | ( 宋攀奇, 张建桥, 李怡雯, 刘广峰, 李娜, 化学学报, 2022, 80, 690.) |
[77] | Yin X.; Gu K.; Shao Z. Z. Acta Chim. Sinica 2023, 81, 116. (in Chinese) |
[77] | ( 殷雪旸, 顾恺, 邵正中, 化学学报, 2023, 81, 116.) |
/
〈 |
|
〉 |