三维结构Li6.28La3Zr2Al0.24O12增强聚氧化乙烯基固态电解质的性能研究
收稿日期: 2023-07-13
网络出版日期: 2023-10-24
基金资助
上海市科学技术委员会(21ZR1424900); 上海市科学技术委员会(19DZ2271100)
Study on the Properties of Polyethylene Oxide Based Solid State Electrolyte Enhanced by Three-Dimensional Structured Li6.28La3Zr2Al0.24O12
Received date: 2023-07-13
Online published: 2023-10-24
Supported by
Science and Technology Commission of Shanghai Municipality(21ZR1424900); Science and Technology Commission of Shanghai Municipality(19DZ2271100)
通过牺牲模板法制备了一种三维框架Li6.28La3Zr2Al0.24O12 (3D-LLZAO)无机电解质, 并将其用于构建聚氧化乙烯(PEO)基复合固态电解质膜. 通过扫描电子显微镜(SEM)、X射线衍射(XRD)等物理表征及电化学阻抗谱(EIS)、线性扫描伏安(LSV)和充放电循环等电化学测试方法研究了PEO基固态电解质的性能. 结果表明加入10% (w) 3D-LLZAO的PEO基复合固态电解质CPE-10具有较小的体电阻、较宽的电化学稳定窗口. 复合电解质CPE-10室温下离子电导率为1.58×10−4 S•cm−1, 锂离子迁移数为0.26. 利用复合固态电解质组装的锂锂对称电池可在室温下0.05 mA•cm−2的电流密度条件下稳定循环1600 h. 以磷酸铁锂(LFP)为正极组装的LFP/CPE-10/Li电池在0.5 C倍率下初始放电比容量为155.6 mAh•g−1, 循环100次后容量保持率为86%.
关键词: 固态电解质; 聚氧化乙烯; Li6.28La3Zr2Al0.24O12; 锂离子电池
常婉莹 , 谭莹瑛 , 吴静怡 , 刘英杰 , 蔡金海 , 赖春艳 . 三维结构Li6.28La3Zr2Al0.24O12增强聚氧化乙烯基固态电解质的性能研究[J]. 化学学报, 2023 , 81(12) : 1708 -1715 . DOI: 10.6023/A23070335
The flammable organic liquid electrolytes in Li-ion batteries may incur serious safety issues, all-solid-state batteries are regarded as the ultimate solution to the safety issues. Among various types of solid electrolytes, solid polymer electrolytes have been widely studied because of their advantages, such as good filming property, cost-effective, and mechanical flexibility. However, the low Li-ion conductivity and instability of solid polymer electrolytes hinder their actual applications in the high energy density batteries. An effective strategy to address these issues is to composite ceramic electrolytes and polymer electrolytes. Here, a three-dimensional framework Li6.28La3Zr2Al0.24O12 (3D-LLZAO) inorganic electrolyte was prepared by sacrificial template method, and was used to construct a polyethylene oxide (PEO) based composite solid state electrolyte film. The 3D-LLZAO was fabricated by using a polymeric sponge method, namely impregnating the polymeric sponge with an aqueous ceramic slurry. PEO:LiTFSI (lithium bis((trifluoromethyl)sulfonyl)azanide) solution was obtained by dissolving PEO (Mw=1×106) and LiTFSI in acetonitrile with a molar ratio of n(EO)∶n(Li+)=18∶1. After that, succinonitrile (SN) is added with a mass ratio of m(PEO)∶m(SN)=2∶1. The 3D garnet composite electrolyte was acquired by immersing the 3D garnet framework of different qualities into the PEO-LiTFSI-SN solution in vacuum. The prepared solution drops are added to the teflon template. Afterward, the sample was dried in vacuum to remove the solvent. The properties of PEO based composite solid state electrolyte were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV) and charge-discharge cycle. The results show that the PEO based composite solid state electrolyte CPE-10 with 10% (w) 3D-LLZAO has smaller volume resistance and wider electrochemical stability window. The ionic conductivity of the composite electrolyte at room temperature is 1.58×10−4 S•cm−1, and the lithium-ion migration number is 0.26. The symmetric battery assembled with a composite solid electrolyte can be stably circulated for 1600 h at a current density of 0.05 mA•cm−2 at room temperature. The assembled LiFePO4/CPE-10/Li battery shows an initial specific discharge capacity of 155.6 mAh•g−1 at a rate of 0.5 C, and a capacity retention rate of 86% after 100 cycles. It turns out that 3D garnet composite electrolytes are good candidates for next-generation lithium metal batteries.
[1] |
Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
|
[2] |
Yang, X. F.; Adair, K. R.; Gao, X. J.; Sun, X. L. Energy Environ. Sci. 2021, 14, 643.
|
[3] |
Yoon, K.; Lee, S.; Oh, K.; Kang, K. Adv. Mater. 2021, 34, 2104666.
|
[4] |
Yuan, Z. X.; Zhang, H.; Hu, S. J.; Zhang, B. T.; Zhang, J. J.; Cui, G. L. Acta Chim. Sinica 2023, 81, 1064 (in Chinese).
|
[4] |
(苑志祥, 张浩, 胡思伽, 张波涛, 张建军, 崔光磊, 化学学报, 2023, 81, 1064.)
|
[5] |
Zhao, Y.; Wang, L.; Zhou, Y. N.; Liang, Z.; Tavajohi, N.; Li, B. H.; Li, T. Adv. Sci. 2021, 8, 2003675.
|
[6] |
Chen, J.; Wu, J. W.; Wang, X. D.; Zhou, A. A.; Yang, Z. L. Energy Storage Mater. 2021, 35, 70.
|
[7] |
Manthiram, A.; Yu, X. W.; Wang, S. F. Nat. Rev. Mater. 2017, 2, 16013.
|
[8] |
Xi, G.; Xiao, M.; Wang, S. J.; Han, D. M.; Li, Y. N.; Meng, Y. Z. Adv. Funct. Mater. 2021, 31, 2007598.
|
[9] |
Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H. Adv. Sci. 2020, 7, 1903088.
|
[10] |
Gao, Z. H.; Sun, H. B.; Fu, L.; Ye, F. L.; Zhang, Y.; Luo, W.; Huang, Y. H. Adv. Mater. 2018, 30, 1705702.
|
[11] |
Chen, R. S.; Li, Q. H.; Yu, X. Q.; Chen, L. Q.; Li, H. Chem. Rev. 2020, 120, 6820.
|
[12] |
Yu, Z. J.; Zhang, X. Y.; Fu, C. K.; Wang, H.; Chen, M.; Yin, G. P.; Huo, H.; Wang, J. J. Adv. Energy Mater. 2021, 11, 2003250.
|
[13] |
Tang, S.; Guo, W.; Fu, Y. Z. Adv. Energy Mater. 2021, 11, 2000802.
|
[14] |
Li, Z.; Fu, J. L.; Zhou, X. Y.; Gui, S. W.; Lu, W.; Yang, H.; Li, H.; Guo, X. Adv. Sci. 2023, 10, 22017018.
|
[15] |
Tian, S. W.; Zhou, L. X.; Zhang, B. Q.; Zhang, J. J.; Du, X. F.; Zhang, H.; Hu, S. J.; Yuan, Z. X.; Han, P. X.; Li, S. L.; Zhao, W.; Zhou, X. H.; Cui, G. L. Acta Chim. Sinica 2020, 80, 1410 (in Chinese).
|
[15] |
(田宋炜, 周丽雪, 张秉乾, 张建军, 杜晓璠, 张浩, 胡思伽, 苑志祥, 韩鹏献, 李素丽, 赵伟, 周新红, 崔光磊, 化学学报, 2020, 80, 1410.)
|
[16] |
Zhao, S. S.; Wu, Q. X.; Ma, W. Q.; Yang, L. S. Front. Chem. 2020, 8, 640.
|
[17] |
Du, L. L.; Zhang, B.; Wang, X. F.; Dong, C. H.; Mai, L. Q.; Xu, L. Chem. Eng. J. 2023, 451, 138787.
|
[18] |
Zhao, T.; Kou, W. J.; Zhang, Y. F.; Wu, W. J.; Li, W. P.; Wang, J. T. J. Power Sources 2023, 554, 232349.
|
[19] |
Zhang, L. G.; Deng, N. P.; Kang, J. B.; Wang, X. X.; Gao, H. J.; Liu, Y. R.; Wang, H.; Wang, G.; Cheng, B. W.; Kang, W. M. J. Energy Chem. 2023, 77, 326.
|
[20] |
Yang, Q.; Deng, N. P.; Zhao, Y. X.; Gao, L.; Cheng, B. W.; Kang, W. M. Chem. Eng. J. 2023, 451, 138532.
|
[21] |
Zheng, J.; Tang, M. X.; Hu, Y. Y. Angew. Chem., Int. Ed. 2016, 55, 12538.
|
[22] |
Zhang, X. Y.; Fu, C. K.; Cheng, S. C.; Zhang, C. B.; Zhang, L. C.; Jiang, M.; Wang, J. J.; Ma, Y. L.; Zuo, P. J.; Du, C. Y.; Gao, Y. Z.; Yin, G. P.; Huo, H. Energy Storage Mater. 2023, 56, 121.
|
[23] |
Zhang, J. M.; Zeng, Y. P.; Li, Q. P.; Tang, Z.; Sun, D.; Huang, D.; Zhao, L.; Tang, Y. G.; Wang, H. Y. Energy Storage Mater. 2023, 54, 440.
|
[24] |
Song, J. C.; Xu, Y. X.; Zhou, Y. C.; Wang, P. F.; Feng, H. L.; Yang, J.; Zhuge, F. C.; Tan, Q. Q. Electrochim. Acta 2023, 437, 141504.
|
[25] |
Sun, H. C.; Kang, S. F.; Cui, L. F. Chem. Eng. J. 2023, 454, 140375.
|
[26] |
Zhang, Z.; Wang, X.; Li, X.; Zhao, J.; Liu, G.; Yu, W.; Dong, X.; Wang, J. Mater. Today Sustain. 2023, 21, 100316.
|
[27] |
Zhao, X. X.; Wang, C.; Liu, H.; Liang, Y. H.; Fan, L. Z. Batteries Supercaps 2023, 6, e20220502.
|
[28] |
Cheng, Z. W.; Liu, T.; Zhao, B.; Shen, F.; Jin, H. Y.; Han, X. G. Energy Storage Mater. 2021, 34, 388.
|
[29] |
Yang, T. Q.; Wang, C.; Zhang, W. K.; Xia, Y.; Gan, Y. P.; Huang, H.; He, X. P.; Zhang, J. Rare Met. 2022, 41, 1870.
|
[30] |
Fu, X. L.; Li, Y. C.; Liao, C. Z.; Gong, W. P.; Yang, M. Y.; Li, R. K. Y.; Tjong, S. C.; Lu, Z. G. Compos. Sci. Technol. 2019, 184, 107863.
|
[31] |
Li, Y. H.; Sun, Z. J.; Liu, D. Y.; Gao, Y. Y.; Wang, Y. K.; Bu, H. T.; Li, M. T.; Zhang, Y. F.; Gao, G. X.; Ding, S. J. J. Mater. Chem. A 2020, 8, 2021.
|
[32] |
Cai, D.; Wang, D. H.; Chen, Y. J.; Zhang, S. Z.; Wang, X. L.; Xia, X. H.; Tu, J. P. Chem. Eng. J. 2020, 394, 124993.
|
[33] |
Yin, Y. H.; Gao, M. X.; Ding, J. L.; Liu, Y. F.; Shen, L. K.; Pan, H. G. J. Alloys Compd. 2011, 509, 10161.
|
[34] |
Lu, Q. W.; Fang, J. H.; Yang, J.; Yan, G. W.; Liu, S. S.; Wang, J. L. J. Membr. Sci. 2013, 425, 105.
|
[35] |
Yu, C.; Ganapathy, S.; Eck, E. R. H. v.; Wang, H.; Basak, S.; Li, Z. L.; Wagemaker, M. Nat. Commun. 2017, 8, 1086.
|
/
〈 |
|
〉 |