收稿日期: 2023-08-10
网络出版日期: 2023-10-24
基金资助
项目受山东省自然科学基金(ZR2022ME076); 项目受山东省自然科学基金(ZR2022MB087)
Study on the Polyamine Thin Film Composite Membrane for Vanadium Battery
Received date: 2023-08-10
Online published: 2023-10-24
Supported by
Shandong Provincial Natural Science Foundation of China(ZR2022ME076); Shandong Provincial Natural Science Foundation of China(ZR2022MB087)
钒电池(VRB)具有容量和功率相互独立、易于模块化、寿命长和安全性高等优点, 因此特别适合作为大规模储能系统使用. 隔膜是VRB的核心部件之一, 对电池的综合性能和成本影响巨大. 全氟磺酸膜如Nafion(杜邦)具有化学稳定性高、电导率高和机械性能好等优点, 因此是当前VRB中所广泛使用的商业化隔膜. 然而, Nafion用于VRB时存在着钒离子渗透率高和成本高两大主要缺点, 严重制约了VRB的商业化进程. 薄层复合(TFC)膜具有皮层和支撑层易调控、制备简单和离子选择性高等特点, 特别适合于在VRB中使用. 但是传统的聚酰胺型TFC膜在VRB强酸电解液中存在潜在的水解和分解问题. 为了制备VRB用高稳定性TFC膜, 本工作以聚乙烯亚胺(PEI)和三聚氰氯(CC)作为两相单体, 通过界面聚合法制备了不含酰胺基的聚胺型TFC膜并应用于VRB. 在此基础上, 对所制备复合膜进行了钒离子渗透率、单电池充放电性能、化学稳定性和长期循环稳定性等物化性能及电化学性能研究. 结果表明: 聚胺TFC膜(MT)的钒离子渗透系数为3.17×10-7 cm2•min-1, 远小于基膜M0 (30.89×10-7 cm2•min-1)和商业N 115膜(Nafion 115, 10.91×10-7 cm2•min-1). MT膜在40 mA•cm-2的电流密度下的能量效率(EE)高达86.2%, 远高于M0 (74.9%)和N 115 (80.0%)膜. 化学稳定性测试表明MT膜的钒离子渗透系数损失率为4.42%, 低于M0 (8.93%)和N 115 (4.86%). 在80 mA•cm-2的电流密度下100次充放电循环内, 所制备TFC膜具有稳定的库仑效率、电压效率和能量效率. 该TFC膜是理想的商业Nafion膜替代产品, 在VRB中有良好的应用前景.
滕祥国 , 张良伟 , 韩晓玉 , 李郭威 , 戴纪翠 . 钒电池用聚胺薄层复合膜研究[J]. 化学学报, 2024 , 82(1) : 16 -25 . DOI: 10.6023/A23080375
Vanadium redox flow battery (VRB) exhibits the advantages of independent capacity and power, easy modularization, long lifespan and high safety, which make it particularly suitable for use in large-scale energy storage systems. The separator is one of the key components of VRB, which has a significant impact on the overall performance and cost of the battery. Perfluorosulfonic acid membranes such as Nafion (DuPont) possesses the advantages of high chemical stability, high conductivity and good mechanical properties, therefore it has been widely used as commercial membrane in VRB. However, Nafion has the two main drawbacks of high vanadium ion permeability and high cost when used in VRB, which seriously restricts the commercialization process of VRB. Thin film composite (TFC) membranes have the advantages of easy regulation of the skin layer and substrate layer, simple preparation process and high ion selectivity, which make them particularly suitable for VRB system. However, traditional polyamide TFC membranes have potential problems of hydrolysis and decomposition in VRB strong acid electrolytes. In order to obtain a high stable TFC membrane for VRB application, polyethylenimine (PEI) and cyanuric chloride (CC) were used as monomers to prepare polyamine TFC membrane via interfacial polymerization (IP) method. Detailed physico-chemical and electrochemical performances of the membranes including vanadium permeability, single cell charge-discharge performances, chemical stability and long-term charge-discharge have been measured. The results showed that the vanadium permeability of MT is 3.17×10-7 cm2•min-1, which is dramatically lower than that of M0 (30.89×10-7 cm2•min-1) and commercial N 115 (Nafion 115, 10.91×10-7 cm2•min-1) membranes. The energy efficiency (EE) of MT membrane at 40 mA•cm-2 reached up to 86.2%, which was much higher than that of M0 (74.9%) and N 115 (80.0%) membranes. Chemical stability test proved that the permeability loss rate of MT was 4.42%, which is smaller than that of M0 (8.93%) and N 115 (4.86%). At the current density of 80 mA•cm-2, the prepared TFC membrane has shown stable coulombic efficiency, voltage efficiency and energy efficiency. The TFC membrane is the ideal substitutes for commercial Nafion membrane and has great promise of application in VRB.
| [1] | Cunha, á.; Martins, J.; Rodrigues, N.; Brito, F. P. Int. J. Energ. Res. 2015, 39, 889. |
| [2] | Ding, C.; Zhang, H.; Li, X.; Liu, T.; Xing, F. J. Phys. Chem. Lett. 2013, 4, 1281. |
| [3] | Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111, 3577. |
| [4] | Soloveichik, G. L. Chem. Rev. 2015, 115, 11533. |
| [5] | Kear, G.; Shah, A. A.; Walsh, F. C. Int. J. Energ. Res. 2012, 36, 1105. |
| [6] | Zhang, H.-M.; Wang, X.-L.; 2013, 2, 281. (in Chinese) |
| [6] | (张华民, 王晓丽, 储能科学与技术, 2013, 2, 281.) |
| [7] | Skyllas-Kazacos, M.; Rychcik, M.; Robins, R. G.; Fane, A. G.; Green, M. A. J. Electrochem. Soc. 1986, 133, 1057. |
| [8] | Rychcik, M.; Skyllas-Kazacos, M. J. Power Sources 1988, 22, 59. |
| [9] | Jia, Z.-J.; Song, S.-Q.; Wang, B.-G. 2012, 1, 50. (in Chinese) |
| [9] | (贾志军, 宋士强, 王保国, 储能科学与技术, 2012, 1, 50.) |
| [10] | Liu, M.-Y.; Han, L.-W.; Zheng, J.-T.; Xu, H.-W.; Cao, C.-Z. Chinese Journal of Power Sources 2016, 40, 1330. (in Chinese) |
| [10] | (刘明义, 韩临武, 郑建涛, 徐海卫, 曹传钊, 电源技术, 2016, 40, 1330.) |
| [11] | Doan, T. N. L.; Hoang, T. K. A.; Chen, P. RSC Adv 2015, 5, 72805. |
| [12] | Zhang, B.-G.; Zhang, S.-H.; Xing, D.-B.; Yin, C.-X.; Han, R.-L.; Jian, X.-G. 2011, 69, 583. (in Chinese) |
| [12] | (张本贵, 张守海, 邢东博, 尹春香, 韩润林, 蹇锡高, 化学学报, 2011, 69, 583.) |
| [13] | Prifti, H.; Parasuraman, A.; Winardi, S.; Lim, T. M.; Skyllas-Kazacos, M. Membranes-Basel 2012, 2, 275. |
| [14] | Shi, Y.; Eze, C.; Xiong, B.; He, W.; Zhang, H.; Lim, T. M.; Ukil, A.; Zhao, J. Appl. Energ. 2019, 238, 202. |
| [15] | Schwenzer, B.; Zhang, J.; Kim, S.; Li, L.; Liu, J.; Yang, Z. ChemSusChem 2011, 4, 1388. |
| [16] | Ding, Y.; Wang, L.-H.; Han, X.-T.; 2013, 1476. (in Chinese) |
| [16] | (丁跃, 王丽华, 韩旭彤, 高分子学报, 2013, 1476.) |
| [17] | Li, X.; Zhang, H.; Mai, Z.; Zhang, H.; Vankelecom, I. Energ. Environ. Sci. 2011, 4, 1147. |
| [18] | Fetyan, A.; Benetho, B. P.; Bamgbopa, M. O. J. Energy Chem. 2023, 81, 64. |
| [19] | Wang, F.-R.; Jiang, F.-J. Acta Chim. Sinica 2021, 79, 1123. (in Chinese) |
| [19] | (王斐然, 蒋峰景, 化学学报, 2021, 79, 1123.) |
| [20] | Ahn, Y.; Kim, D. Energy Storage Mater. 2020, 31, 105. |
| [21] | Wang, F.-R.; Jiang, F.-J. Prog. Chem. 2021, 33, 462. (in Chinese) |
| [21] | (王斐然, 蒋峰景, 化学进展, 2021, 33, 462.) |
| [22] | Zhang, S.; Liu, Q.-H.; John, L.; Miao, P.; Jiang, Z. Y.; 2020, 40, 50. (in Chinese) |
| [22] | (张赛, 刘庆华, John, L. 缪平, 姜忠义, 现代化工, 2020, 40, 50.) |
| [23] | Zhang, H.; Zhang, H.; Li, X.; Mai, Z.; Zhang, J. Energ. Environ. Sci. 2011, 4, 1676. |
| [24] | Zhou, X.; Xue, R.; Zhong, Y.; Zhang, Y.; Jiang, F. J. Membrane Sci. 2020, 595, 117614. |
| [25] | Lu, W.; Yuan, Z.; Zhao, Y.; Qiao, L.; Zhang, H.; Li, X. Energy Storage Mater. 2018, 10, 40. |
| [26] | M?gelin, H.; Yao, G.; Zhong, H.; Dos Santos, A. R.; Barascu, A.; Meyer, R.; Krenkel, S.; Wassersleben, S.; Hickmann, T.; Enke, D.; Turek, T.; Kunz, U. J. Power Sources 2018, 377, 18. |
| [27] | Zhao, Y.; Yuan, Z.; Lu, W.; Li, X.; Zhang, H. J. Power Sources 2017, 342, 327. |
| [28] | Chae, I. S.; Luo, T.; Moon, G. H.; Ogieglo, W.; Kang, Y. S.; Wessling, M. Adv. Energy Mater. 2016, 6, 1600517. |
| [29] | Lu, W.; Yuan, Z.; Zhao, Y.; Zhang, H.; Zhang, H.; Li, X. Chem. Soc. Rev. 2017, 46, 2199. |
| [30] | Wu, J.; Dai, Q.; Zhang, H.; Li, X. ChemSusChem 2020, 13, 3805. |
| [31] | Xu, Z.; Huang, K. Chem. Ind. Eng. Prog. 2022, 41, 1569. (in Chinese) |
| [31] | (徐至, 黄康, 化工进展, 2022, 41, 1569.) |
| [32] | Zhang, H.-J.; Shen, J.-N.; Gao, C.-J.; 2017, 27, 6. (in Chinese) |
| [32] | (张慧娟, 沈江南, 高从堦, 过滤与分离, 2017, 27, 6.) |
| [33] | Xu, G.; Wang, J.; Li, C. Desalination 2013, 328, 83. |
| [34] | Dai, Q.; Liu, Z.; Huang, L.; Wang, C.; Zhao, Y.; Fu, Q.; Zheng, A.; Zhang, H.; Li, X. Nat. Commun. 2020, 11, 13. |
| [35] | Liang, S.; Xu, G.; Jin, Y.; Wu, Z.; Cai, Z.; Zhao, N.; Wu, Z. J. Membrane Sci. 2015, 476, 475. |
| [36] | Yao, C. W.; Burford, R. P.; Fane, A. G.; Fell, C. J. D.; Mcdonogh, R. M. J. Appl. Polym. Sci. 1987, 34, 2399. |
| [37] | Dalwani, M.; Benes, N. E.; Bargeman, G.; Stamatialis, D.; Wessling, M. J. Membrane Sci. 2011, 372, 228. |
| [38] | Lee, K. P.; Zheng, J.; Bargeman, G.; Kemperman, A. J. B.; Benes, N. E. J. Membrane Sci. 2015, 478, 75. |
| [39] | Ma, X.; Wen, X.; Gu, S.; Xu, Z.; Zhang, J. J. Membrane Sci. 2013, 430, 62. |
| [40] | Lu, W.; Yuan, Z.; Li, M.; Li, X.; Zhang, H.; Vankelecom, I. Adv. Funct. Mater. 2017, 27, 1604587. |
| [41] | Lau, W.; Ismail, A. F. Desalination 2009, 249, 996. |
| [42] | Jaafar, J.; Ismail, A. F.; Mustafa, A. Mat. Sci. Eng. A.-Struct. 2007, 460, 475. |
| [43] | Daud, S. N. S. S.; Norddin, M. N. A. M.; Jaafar, J.; Sudirman, R.; Othman, M. H. D.; Ismail, A. F. Arab. J. Sci. Eng. 2021, 46, 6189. |
| [44] | Lau, W. J.; Ismail, A. F. J. Membrane Sci. 2009, 334, 30. |
| [45] | Bai, L.; Wang, M.; Li, Z.; Yang, H.; Peng, Z.; Zhao, Y. J. Membrane Sci. 2022, 643, 120012. |
| [46] | Jiang, Z.; Miao, J.; He, Y.; Hong, X.; Tu, K.; Wang, X.; Chen, S.; Yang, H.; Zhang, L.; Zhang, R. RSC Adv. 2019, 9, 37546. |
| [47] | Zhu, X.; Cheng, X.; Luo, X.; Liu, Y.; Xu, D.; Tang, X.; Gan, Z.; Yang, L.; Li, G.; Liang, H. Environ. Sci. Technol. 2020, 54, 6365. |
| [48] | Teng, X.; Guo, Y.; Liu, D.; Li, G.; Yu, C.; Dai, J. J. Membrane Sci. 2020, 601, 117906. |
| [49] | Zhang, B.; Liu, S.; Wang, L. H.; Han, X. T.; 2015, 418. (in Chinese) |
| [49] | (张斌, 刘帅, 王丽华, 韩旭彤, 高分子学报, 2015, 418.) |
| [50] | Tian, J.; Chang, H.; Gao, S.; Zhang, R. Desalination 2020, 491, 114499. |
| [51] | Thong, P. T.; Ajeya, K. V.; Dhanabalan, K.; Roh, S.; Son, W.; Park, S.; Jung, H. J. Power Sources 2022, 521, 230912. |
| [52] | Song, X.-P.; Liu, J.-Y.; Wang, L.-H.; Han, X.-T.; Huang, Q.-L. 2019, 40, 1543. (in Chinese) |
| [52] | (宋西鹏, 刘金宇, 王丽华, 韩旭彤, 黄庆林, 高等学校化学学报, 2019, 40, 1543.) |
| [53] | Dalal, U.; Kapoor, M.; Verma, A. Energ. Fuel. 2023, 37, 13457. |
| [54] | Zhang, D.; Huang, K.; Xia, Y.; Cao, H.; Dai, L.; Qu, K.; Xiao, L.; Fan, Y.; Xu, Z. Angew. Chem. Int. Ed. 2023, 62, e2023109. |
| [55] | Guo, C.-S. Ph.D. Dissertation, Tiangong University, Tianjin, 2022. (in Chinese) |
| [55] | (郭昌盛, 博士论文, 天津工业大学,天津, 2022.) |
| [56] | Shi, Q.; Ni, L.; Zhang, Y.; Feng, X.; Chang, Q.; Meng, J. J. Mater. Chem. A 2017, 5, 13610. |
| [57] | Hu, P.; He, J.; Tian, B.; Xu, Z.; Yuan, T.; Sun, H.; Li, P.; Niu, Q. J. Desalination 2020, 496, 114340. |
| [58] | Zhu, X.; Tang, X.; Luo, X.; Yang, Z.; Cheng, X.; Gan, Z.; Xu, D.; Li, G.; Liang, H. J. Membrane Sci. 2021, 618, 118738. |
| [59] | Zeng, H.; Li, Y.; Wang, C. Sep. Purif. Technol. 2020, 236, 116258. |
| [60] | Aravind, K.; Sangeetha, D. Int. J. Polym. Mater. Polym. Biomat. 2014, 64, 220. |
| [61] | Zhang, R.; Yu, S.; Shi, W.; Zhu, J.; Van der Bruggen, B. Sep. Purif. Technol. 2019, 215, 670. |
| [62] | Li, G.-W. M.S. Thesis, Harbin Institute of Technology, Haerbin, 2019. (in Chinese) |
| [62] | (李郭威, 硕士论文, 哈尔滨工业大学,哈尔滨, 2019.) |
| [63] | Hasbullah, N.; Sekak, K. A.; Ibrahim, I.; Mahmood, M. R.; Soga, T.; Nagaoka, S.; Mamat, M. H.; Jafar, S. M. Aip Conference Proceedings 2016, 1733, 020049. |
| [64] | Dong, Y.-F.; Tan, X.-L.; Guo, Q.; Li, X.; Li, D.; Li, M. Physical Testing and Chemical Analysis Part A: Physical Testing 2011, 47, 535 (in Chinese) |
| [64] | (董云凤, 谭孝林, 郭强, 李夏, 李丹, 李萌, 理化检验(物理分册), 2011, 47, 535.) |
| [65] | Yuan, Z.; Zhu, X.; Li, M.; Lu, W.; Li, X.; Zhang, H. Angew. Chem. Int. Ed. 2016, 55, 3058. |
| [66] | Zheng, L.; Wang, H.; Niu, R.; Zhang, Y.; Shi, H. Electrochim. Acta 2018, 282, 437. |
| [67] | Wang, N.-F. Ph.D. Dissertation, Central South University, Changsha, 2012. (in Chinese) |
| [67] | (汪南方, 博士论文, 中南大学, 长沙, 2012.) |
| [68] | Wang, F.; Zhang, Z.; Jiang, F. J. Power Sources 2021, 506, 230234. |
/
| 〈 |
|
〉 |