综述

用于卤素捕获的材料研究进展

  • 林航青 ,
  • 马若茹 ,
  • 江怡蓝 ,
  • 许木榕 ,
  • 林洋彭 ,
  • 杜克钊
展开
  • a福建师范大学 化学与材料学院 福建 福州 350117
    b厦门市环境科学研究院 福建 厦门 361021

林航青, 就读于福建师范大学化学与材料学院, 2020级应用化学专业本科生.

马若茹, 就读于福建师范大学化学与材料学院, 2020级应用化学专业本科生.

江怡蓝, 就读于福建师范大学化学与材料学院, 2020级应用化学专业本科生.

许木榕, 就读于福建师范大学化学与材料学院, 2022级化学教育专业本科生.

林洋彭(1995-), 2023年6月于福建师范大学获得理学博士学位, 同年10月入职厦门市环境科学研究院, 主要研究方向为金属卤化物的设计及应用研究. 至今以第一作者身份在J. Phys. Chem. Lett., Chem. Eng. J., Energy Environ. Mater.等期刊发表6篇SCI论文, 以合作者身份在Angew. Chem. Int. Ed., Nano Lett., Adv. Funct. Mater.等期刊发表15篇SCI论文, 授权中国发明专利两项.

杜克钊, 2013年博士毕业于中国科学院大学福建物质结构研究所, 相继在新加坡南洋理工大学和美国杜克大学开展博士后研究, 于2018年入职福建师范大学, 主要研究金属卤化物晶态材料的构效关系, 已在J. Am. Chem. Soc., Angew. Chem. Int. Ed.等国际期刊上发表SCI论文90篇左右, 授权专利3项, h-index 29. 主持(含结题)国家基金三项, 获“闽江学者”特聘教授和福建省杰青项目等省部级项目资助.

收稿日期: 2023-08-27

  网络出版日期: 2023-11-01

基金资助

项目受国家自然科学基金(22373014); 福建省自然科学基金(2022J06019)

Research Progress of Materials Used for Elemental Halogen Capture

  • Hangqing Lin ,
  • Ruoru Ma ,
  • Yilan Jiang ,
  • Murong Xu ,
  • Yangpeng Lin ,
  • Kezhao Du
Expand
  • aCollege of Chemistry and Materials, Fujian Normal University, Fuzhou, Fujian 350117
    bXiamen Institute of Environmental Science, Xiamen, Fujian 361021
These authors contributed equally to this work

Received date: 2023-08-27

  Online published: 2023-11-01

Supported by

National Natural Science Foundation of China(22373014); Natural Science Foundation of Fujian Province(2022J06019)

摘要

卤素单质氟(F2)、氯(Cl2)、溴(Br2)和碘(I2), 在化学工业中发挥重要作用. 但是由于F2、Cl2和Br2的毒性、腐蚀性和挥发性使得它们的安全储存和运输形成了严峻的挑战, 而将这些卤素单质进行吸附预固化可以有效提高它们使用的安全性. 理想的卤素单质预固化材料须满足多种性能要求, 如对卤素单质的稳定性、选择性、吸脱附可逆性和可加工性等, 这给预固化材料的设计和合成带来了很大的挑战. 目前为止, Cl2和Br2的预固化材料已经有不少报道(F2暂时还未有), 对这类材料进行总结和回顾, 有助于为后续的材料优化和设计提供参考. 然而, 截至本文撰写之前, 还未有人对Cl2和Br2预固化材料的研究做过综述报道. 因此, 通过本文综述了多孔有机聚合物(POPs)、金属有机框架(MOFs)、多孔有机笼(POCs)以及金属卤化物等在Cl2和Br2吸附预固化上的研究现状, 从材料结构和性能的角度详细讨论了不同材料在卤素单质预固化上的机理和构效关系, 旨在为卤素单质预固化材料的后续研究提供有益的借鉴, 最终开发出有实际应用前景的卤素单质预固化材料, 从而提高卤素单质实际应用的安全性, 降低卤素单质泄露的风险, 对环境保护和实现相关工业的可持续发展具有重要意义.

本文引用格式

林航青 , 马若茹 , 江怡蓝 , 许木榕 , 林洋彭 , 杜克钊 . 用于卤素捕获的材料研究进展[J]. 化学学报, 2024 , 82(1) : 62 -74 . DOI: 10.6023/A23080392

Abstract

Elemental halogen, that is fluorine (F2), chlorine (Cl2), bromine (Br2) and iodine (I2), plays an important role in the chemical industry. However, the toxicity, corrosiveness and volatility of elemental halogen pose serious challenges for their safe storage and transportation. Thus, the precuring of these elemental halogen can effectively improve the safety of their usage. Ideal precuring materials for elemental halogen need to meet a variety of requirements, such as stability, selectivity, recyclability, processability, etc., which brings great challenges to the design and synthesis of desired materials. So far, some precuring materials for Cl2 and Br2 have been reported (F2 is not available yet). The summary and review of these materials will help to provide reference for the follow-up materials optimization and design. However, as far as we know, the related review has not been reported yet. Therefore, we give a comprehensive overview of the precuring materials for Cl2 and Br2 including porous organic polymers (POPs), metal-organic frameworks (MOFs), porous organic cages (POCs) and metal halides. The corresponding mechanism and structure-property relationship are discussed in detail. The purpose of this paper is to provide a useful insight into the follow-up materials design for the elemental halogen precuring, and finally get an ideal precuring materials with practical application prospects, so as to improve the usage safety of elemental halogen and reduce the risk of halogen leakage. It is of great significance to environmental protection and sustainable development.

参考文献

[1]
Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R.; Riedel, S.; Pernice, H. In Ullmann's Encyclopedia of Industrial Chemistry, https://doi.org/10.1002/14356007.a11_293.pub2, Wiley online library, 2020, pp. 1-19.
[2]
The Essential Chemical Industry-online, http://www.essential-chemicalindustry.org/chemicals/bromine.html (accessed september 20, 2023)
[3]
U.S. Department of the Interior U.S. Geological Survey; Mineral Commodity Summaries 2023, 2023, pp. 48-49, 90-91.
[4]
The Essential Chemical Industry-online, http://www.essentialchemical-industry.org/chemicals/iodine.html (accessed september 20, 2023)
[5]
Niu, Y.-S. Ph.D. Dissertation, University of Chinese Academy of Sciences (Chinese Academy of Sciences Shanghai Institute of Applied Physics), Shanghai, 2022. (in Chinese)
[5]
(牛永生, 博士论文, 中国科学院大学中国科学院上海应用物理研究所, 上海, 2022.)
[6]
Finlayson-Pitts, B. J. Nat. Chem. 2013, 5, 724.
[7]
Saikia, I.; Borah, A. J.; Phukan, P. Chem. Rev. 2016, 116, 6837.
[8]
Braff, W. A.; Bazant, M. Z.; Buie, C. R. Nat. Commun. 2013, 4, 2346
[9]
Lee, J.-H.; Byun, Y.; Jeong, G. H.; Choi, C.; Kwen, J.; Kim, R.; Kim, I. H.; Kim, S. O.; Kim, H.-T. Adv. Mater. 2019, 31, 1970366.
[10]
Huang, Y.; Xu, Y.; Xu, M.; Zhao, X.; Chen, M. Fronts Endocrinol. 2023, 14, 1150036.
[11]
Jost, G.; Pietsch, H.; Lengsfeld, P.; Hütter, J.; Sieber, M. A. Invest. Radiol. 2010, 45, 255.
[12]
Glotz, G.; Lebl, R.; Dallinger, D.; Kappe, C. O. Angew. Chem. Int. Ed. 2017, 56, 13786.
[13]
Barrett, A. M.; Adams, P. J. Risk Anal. 2011, 31, 1243.
[14]
Chengdu, Puritong, Sohu News 2023,. (in Chinese)
[14]
(成都普瑞通, 搜狐新闻, https://www.sohu.com/a/668655838_120723576)
[15]
Jinshan District Emergency Management Bureau, Sohu News 2022, https://www.sohu.com/a/569261555_121117454. (in Chinese)
[15]
(金山区应急管理局, 搜狐新闻, https://www.sohu.com/a/569261555_121117454)
[16]
Zhang, D.-Q.; Xia, D.-F. China Salt Ind. 2016, (03), 47. (in Chinese)
[16]
(张德强, 夏德富, 中国盐业, 2016, (03), 47.)
[17]
Yang, M. Jiangsu Salt Sci. Technol. 2006, (04), 13. (in Chinese)
[17]
(杨梅, 苏盐科技, 2006, (04), 13.)
[18]
Lu, Y.; Yuan, J.; Du, D.; Sun, B.; Yi, X. GeoSus 2021, 2, 95.
[19]
Xiao, W.-Q. M.S. Thesis, Taiyuan university of technology, Taiyuan, 2010. (in Chinese)
[19]
(肖卫强, 硕士论文, 太原理工大学,太原, 2010.)
[20]
Fan, L.-W. M.S. Thesis, Soochow University, Suzhou, 2016. (in Chinese)
[20]
(范丽巍, 硕士论文, 苏州大学, 苏州, 2016.)
[21]
Miao, J.-K.; Leng, K.-L.; Xu, Y.; Sun, W.-H.; Xing, L.-H. Inorg. Chem. Ind. 2010, 42, 54. (in Chinese)
[21]
(苗钧魁, 冷凯良, 许洋, 孙伟红, 邢丽红, 无机盐工业, 2010, 42, 54.)
[22]
Slater, A. G.; Cooper, A. I. Science 2015, 348, aaa8075.
[23]
Li, X.; Chen, K.; Guo, R.; Wei, Z. Chem. Rev. 2023, 123, 10432.
[24]
Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Science 2017, 357, 673.
[25]
Song, K. S.; Fritz, P. W.; Coskun, A. Chem. Soc. Rev. 2022, 51, 9831.
[26]
Yang, X.; Ullah, Z.; Stoddart, J. F.; Yavuz, C. T. Chem. Rev. 2023, 123, 4602.
[27]
Su, K.; Wang, W.; Du, S.; Ji, C.; Yuan, D. Nat. Commun. 2021, 12, 3703.
[28]
Tulchinsky, Y.; Hendon, C. H.; Lomachenko, K. A.; Borfecchia, E.; Melot, B. C.; Hudson, M. R.; Tarver, J. D.; Korzyński, M. D.; Stubbs, A. W.; Kagan, J. J.; Lamberti, C.; Brown, C. M.; Dinc?, M. J. Am. Chem. Soc. 2017, 139, 5992.
[29]
Lee, S.; Kevlishvili, I.; Kulik, H. J.; Kim, H.-T.; Chung, Y. G.; Koh, D.-Y. J. Mater. Chem. A 2022, 10, 24802.
[30]
Lin, Y.-P.; Xia, B.; Hu, S.; Zhong, Y.; Huang, Y.-E.; Zhang, Z.-Z.; Wu, N.; Wu, Y.-W.; Wu, X.-H.; Huang, X.-Y.; Xiao, Z.; Du, K.-Z. Energy Environ. Mater. 2020, 3, 535.
[31]
Lin, Y.-P.; Xia, B.; Hu, S.; Liu, Z.; Huang, X.-Y.; Xiao, Z.; Du, K.-Z. J. Mater. Sci. 2022, 57, 18266.
[32]
Lin, Y.-P.; Huang, X.-Y.; Du, K.-Z. Mater. Chem. Phys. 2022, 280, 125820.
[33]
Pang, J.; Yuan, S.; Du, D.; Lollar, C.; Zhang, L.; Wu, M.; Yuan, D.; Zhou, H.-C.; Hong, M. Angew. Chem. Int. Ed. 2017, 56, 14622.
[34]
Chen, D.; Luo, D.; He, Y.; Tian, J.; Yu, Y.; Wang, H.; Sessler, J. L.; Chi, X. J. Am. Chem. Soc. 2022, 144, 16755.
[35]
Wang, C.; Yang, K.; Xie, Q.; Pan, J.; Jiang, Z.; Yang, H.; Zhang, Y.; Wu, Y.; Han, J. Nano Lett. 2023, 23, 2239.
[36]
Kurisingal, J. F.; Yun, H.; Hong, C. S. J. Hazard. Mater. 2023, 458, 131835.
[37]
Pan, T.; Yang, K.; Dong, X.; Han, Y. J. Mater. Chem. A 2023, 11, 5460.
[38]
Hu, R.; Zhang, X.; Chi, K.-N.; Yang, T.; Yang, Y.-H. ACS Appl. Mater. Interfaces 2020, 12, 30770.
[39]
Song, W.; Zhang, Y.; Tran, C. H.; Choi, H. K.; Yu, D.-G.; Kim, I. Prog. Polym. Sci. 2023, 142, 101691.
[40]
Zhang, Z.; Jia, J.; Zhi, Y.; Ma, S.; Liu, X. Chem. Soc. Rev. 2022, 51, 2444.
[41]
Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Chem. Rev. 2020, 120, 8814.
[42]
Qian, Z.; Wang, Z. J.; Zhang, K. A. I. Chem. Mater. 2021, 33, 1909.
[43]
Xie, L.; Zheng, Z.; Lin, Q.; Zhou, H.; Ji, X.; Sessler, J. L.; Wang, H. Angew. Chem. Int. Ed. 2022, 61, e202113724.
[44]
Liu, T.; Zhao, Y.; Song, M.; Pang, X.; Shi, X.; Jia, J.; Chi, L.; Lu, G. J. Am. Chem. Soc. 2023, 145, 2544.
[45]
Zhang, X.; Maddock, J.; Nenoff, T. M.; Denecke, M. A.; Yang, S.; Schr?der, M. Chem. Soc. Rev. 2022, 51, 3243.
[46]
Ma, Y.-C.; Yao, Y.-X.; Fu, Y.; Liu, C.-B.; Hu, B.; Che, G.-B. Prog. Chem. 2023, 35, 1097. (in Chinese)
[46]
(马云超, 姚宇新, 付跃, 刘春波, 胡波, 车广波, 化学进展, 2023, 35, 1097.)
[47]
Al-Naddaf, Q.; Rownaghi, A. A.; Rezaei, F. Chem. Eng. J. 2020, 384, 123251.
[48]
Lin, Y.; Kong, C.; Zhang, Q.; Chen, L. Adv. Energy Mater. 2017, 7, 1601296.
[49]
Rosen, A. S.; Mian, M. R.; Islamoglu, T.; Chen, H.; Farha, O. K.; Notestein, J. M.; Snurr, R. Q. J. Am. Chem. Soc. 2020, 142, 4317.
[50]
Bloch, E. D.; Queen, W. L.; Chavan, S.; Wheatley, P. S.; Zadrozny, J. M.; Morris, R.; Brown, C. M.; Lamberti, C.; Bordiga, S.; Long, J. R. J. Am. Chem. Soc. 2015, 137, 3466.
[51]
Yang, S.; Sun, J.; Ramirez-Cuesta, A. J.; Callear, S. K.; David, W. I. F.; Anderson, D. P.; Newby, R.; Blake, A. J.; Parker, J. E.; Tang, C. C.; Schr?der, M. Nat. Chem. 2012, 4, 887.
[52]
Rieth, A. J.; Tulchinsky, Y.; Dinc?, M. J. Am. Chem. Soc. 2016, 138, 9401.
[53]
DeCoste, J. B.; Browe, M. A.; Wagner, G. W.; Rossin, J. A.; Peterson, G. W. Chem. Commun. 2015, 51, 12474.
[54]
Britt, D.; Tranchemontagne, D.; Yaghi, O. M. Proc. Natl. Acad. Sci. 2008, 105, 11623.
[55]
Azbell, T. J.; Mandel, R. M.; Lee, J.-H.; Milner, P. J. ACS Appl. Mater. Interfaces 2022, 14, 53928.
[56]
Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
[57]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
[58]
Maughan, A. E.; Ganose, A. M.; Scanlon, D. O.; Neilson, J. R. Chem. Mater. 2019, 31, 1184.
[59]
Sakai, N.; Haghighirad, A. A.; Filip, M. R.; Nayak, P. K.; Nayak, S.; Ramadan, A.; Wang, Z.; Giustino, F.; Snaith, H. J. J. Am. Chem. Soc. 2017, 139, 6030.
[60]
Zhou, L.; Liao, J.-F.; Huang, Z.-G.; Wang, X.-D.; Xu, Y.-F.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. ACS Energy Lett. 2018, 3, 2613.
[61]
Vargas, B.; Ramos, E.; Pérez-Gutiérrez, E.; Alonso, J. C.; Solis-Ibarra, D. J. Am. Chem. Soc. 2017, 139, 9116.
[62]
Lin, Y.-P.; Hu, S.; Xia, B.; Fan, K.-Q.; Gong, L.-K.; Kong, J.-T.; Huang, X.-Y.; Xiao, Z.; Du, K.-Z. J. Phys. Chem. Lett. 2019, 10, 5219.
[63]
Yuan, S.; Lu, W.; Chen, Y.-P.; Zhang, Q.; Liu, T.-F.; Feng, D.; Wang, X.; Qin, J.; Zhou, H.-C. J. Am. Chem. Soc. 2015, 137, 3177.
[64]
Salai Cheettu Ammal, S.; Ananthavel, S. P.; Venuvanalingam, P. J. Phys. Chem. A 1997, 101, 1155.
[65]
Yang, M.; Qiu, F.; M. El-Sayed, E.-S.; Wang, W.; Du, S.; Su, K.; Yuan, D. Chem. Sci. 2021, 12, 13307.
[66]
Luo, D.; He, Y.; Tian, J.; Sessler, J. L.; Chi, X. J. Am. Chem. Soc. 2022, 144, 113.
[67]
Yoo, S. J.; Evanko, B.; Wang, X.; Romelczyk, M.; Taylor, A.; Ji, X.; Boettcher, S. W.; Stucky, G. D. J. Am. Chem. Soc. 2017, 139, 9985.
[68]
Goodenough, R. D.; Mills, J. F.; Place, J. Environ. Sci. Technol. 1969, 3, 854.
[69]
Sonnenberg, K.; Mann, L.; Redeker, F. A.; Schmidt, B.; Riedel, S. Angew. Chem. Int. Ed. 2020, 59, 5464.
[70]
Ghalami, Z.; Ghoulipour, V.; Khanchi, A. R. J. Comput. Chem. 2020, 41, 949.
[71]
Flerlage, H.; Slootweg, J. C. Nat. Rev. Chem. 2023, 7, 593.
文章导航

/