研究论文

金属-有机骨架衍生的Co单原子高效催化硝基芳烃氢化还原

  • 刘健 ,
  • 欧金花 ,
  • 李泽平 ,
  • 蒋婧怡 ,
  • 梁荣涛 ,
  • 张文杰 ,
  • 刘开建 ,
  • 韩瑜
展开
  • a 湖南工学院 材料科学与工程学院 衡阳 421002
    b 大连理工大学 建设工程学部 大连 116024
    c 辽宁省建设科学研究院有限责任公司 沈阳 110005

收稿日期: 2023-08-10

  网络出版日期: 2023-12-01

基金资助

国家自然科学基金青年项目(22202067); 湖南省自然科学基金项目(2023JJ30206); 湖南省教育厅科学研究项目(22A0620); 湖南省大学生创新创业项目(S202311528006); 湖南省大学生创新创业项目(S202311528102X); 湖湘青年科技创新人才项目(2020RC3055); 湖南工学院材料科学与工程学科开放课题项目(KFA23001)

Efficient Catalytic Hydrogenation of Nitroaromatic Using Cobalt Single-atom Derived from Metal-organic Framework

  • Jian Liu ,
  • Jinhua Ou ,
  • Zeping Li ,
  • jingyi Jiang ,
  • Rongtao Liang ,
  • Wenjie Zhang ,
  • kaijian Liu ,
  • Yu Han
Expand
  • a School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
    b Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
    c Liaoning Province Building Science Research Institute Co. Ltd, Shenyang 110005, China

Received date: 2023-08-10

  Online published: 2023-12-01

Supported by

National Natural Science Foundation of China(22202067); Hunan Provincial Natural Science Foundation of China(2023JJ30206); Research Foundation of Education Bureau of Hunan Province, China(22A0620); National Students’ project for innovation and entrepreneurship training program(S202311528006); National Students’ project for innovation and entrepreneurship training program(S202311528102X); Hunan Young Scientific and Technological Innovative Talents(2020RC3055); Open Project Fund of Materials Science and Engineering of Hunan Institute of Technology(KFA23001)

摘要

芳香胺及其衍生物是药物、染料、除草剂等的重要原料或关键中间体, 开发高效、低成本、高选择性的硝基芳烃还原催化剂具有重要的现实意义. 以常见的沸石类咪唑骨架材料为模板, 原位热解制备了一种Co单原子催化剂(Co-N-C), 并以乙醇作溶剂, 水合肼作氢源, 实现了多种硝基芳烃的高效氢化还原. 该Co-N-C材料制备简单, 催化活性优异, 所催化的硝基芳烃还原体系反应条件温和, 官能团兼容性优异. 天然产物应用实验、克级扩大实验、循环实验和抗浸出实验证实了Co-N-C的高效性和还原体系的实用性. 另外, 通过反应过程检测, 提出了Co-N-C催化硝基芳烃直接还原和缩合还原的两种反应机理.

本文引用格式

刘健 , 欧金花 , 李泽平 , 蒋婧怡 , 梁荣涛 , 张文杰 , 刘开建 , 韩瑜 . 金属-有机骨架衍生的Co单原子高效催化硝基芳烃氢化还原[J]. 化学学报, 2023 , 81(12) : 1701 -1707 . DOI: 10.6023/A23080374

Abstract

Aromatic amines and their derivatives are widely used as important active intermediates in drugs, dyes and herbicides. Therefore, the development of highly efficient, low-cost, and highly selective catalysts for the hydrogenation of nitroaromatic hydrocarbons is desirable. In this study, Zn-Co metal-organic framework (MOF) materials were synthesized with Zn2+/Co2+ as the metal source and 2-methylimidazole as an organic ligand at room temperature. Then, a Co catalyst (Co-N-C) was prepared by in-situ pyrolysis using the Zn-Co MOF as a sacrificial template under a nitrogen atmosphere. Aromatic nitro compounds can be selectively converted to the corresponding aromatic amines using ethanol as solvent, hydrazine hydrate as a hydrogen source, and Co-N-C as catalyst. The Co-N-C synthesized by pyrolysis at 1000 ℃ possesses the best catalytic activity. The effects of solvent and reaction time and the amount of Co-N-C, ethanol, and hydrazine hydrate on the catalytic system were investigated. The catalytic effect was the best when 5 mg Co-N-C, 4 mL ethanol, and 4 mmol hydrazine hydrate were added to the system, and the yield of aniline reached 100% after 10 h. Thirty-one different types of nitro-aromatic compounds, including ortho-, meta-, and para-substituted nitroaromatics with electron-donating or electron-withdrawing substituents, nitrobenzene derivatives with other reducible functional groups, and heterocyclic and polycyclic aromatic compounds, were obtained in high yields under this system, which has a wide substrate scope. In addition, the flutamide and nilutamide derivatives and aminoglutethimide were prepared in excellent yields using the Co-N-C catalytic system. The feasibility of the Co-N-C catalytic system was demonstrated using a gram-scale reaction. Cycling and anti-leaching experiments demonstrated that the Co-N-C material has excellent stability and anti-leaching properties, and acts as a reusable heterogeneous catalyst, which can be easily separated and collected by centrifugation. In addition, two reaction mechanisms of direct reduction and condensation reduction of nitro-aromatics using a Co-N-C catalyzed system were proposed by testing the reaction process. This research provides an efficient, simple, and green method for the hydrogenation reduction of nitroaromatics.

参考文献

[1]
Yan, Z.; Xie, H.-P.; Shen, H.-Q.; Zhou, Y.-G. Org. Lett. 2018, 20, 1094.
[2]
Yang, H.; Wang, L.; Xu, S.; Hui, X.; Cao, Y.; He, P.; Li, Y.; Li, H. Chem. Eng. J. 2022, 431, 133863.
[3]
Romero, A. H. ChemistrySelect 2020, 5, 13054.
[4]
Lakshminarayana, B.; Selvaraj, M.; Satyanarayana, G.; Subrahmanyam, C. Catal. Rev. 2022, 10.1080/01614940.2022.2057045.
[5]
Junge, K.; Wendt, B.; Shaikh, N.; Beller, M. Chem. Commun. 2010, 46, 1769.
[6]
Long, J.; Zhou, Y.; Li, Y. Chem. Commun. 2015, 51, 2331.
[7]
Shalom, M.; Molinari, V.; Esposito, D.; Clavel, G.; Ressnig, D.; Giordano, C.; Antonietti, M. Adv. Mater. 2014, 26, 1272.
[8]
Jin, H.; Li, P.; Cui, P.; Shi, J.; Zhou, W.; Yu, X.; Song, W.; Cao, C. Nat. Commun. 2022, 13, 723.
[9]
Chugh, V.; Chatterjee, B.; Chang, W. C.; Cramer, H. H.; Hindemith, C.; Randel, H.; Weyhermüller, T.; Farès, C.; Werlé, C. Angew. Chem. Int. Ed. 2022, 61, e202205515.
[10]
Sarki, N.; Kumar, R.; Singh, B.; Ray, A.; Naik, G.; Natte, K.; Narani, A. ACS Omega 2022, 7, 19804.
[11]
Li, J.; Ding, S.; Wang, F.; Zhao, H.; Kou, J.; Akram, M.; Xu, M.; Gao, W.; Liu, C.; Yang, H. J. Colloid Interf. Sci. 2022, 625, 640.
[12]
Wang, H.; Wang, Y.; Li, Y.; Lan, X.; Ali, B.; Wang, T. ACS Appl. Mater. Interfaces 2020, 12, 34021.
[13]
Yang, L.; Jiang, Z.; Fan, G.; Li, F. Catal. Sci. Technol. 2014, 4, 1123.
[14]
Baghbanian, S. M.; Farhang, M.; Vahdat, S. M.; Tajbakhsh, M. J. Mol. Catal. A-Chem. 2015, 407, 128.
[15]
Natte, K.; Goyal, V.; Sarki, N.; Poddar, M. K.; Ray, A. New J. Chem. 2021, 45, 14687.
[16]
Zhang, S.; Chang, C. R.; Huang, Z. Q.; Li, J.; Wu, Z.; Ma, Y.; Zhang, Z.; Wang, Y.; Qu, Y. J. Am. Chem. Soc. 2016, 138, 2629.
[17]
Tian, H.; Zhou, J.; Li, Y.; Wang, Y.; Liu, L.; Ai, Y.; Hu, Z.-N.; Li, J.; Guo, R.; Liu, Z.; Sun, H.-b.; Liang, Q. ChemCatChem 2019, 11, 5543.
[18]
Ishikawa, H.; Nakatani, N.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. ACS Catal. 2023, 13, 5744.
[19]
Lara, P.; Philippot, K. Catal. Sci. Technol. 2014, 4, 2445.
[20]
Chen, X.; Shen, K.; Ding, D.; Chen, J.; Fan, T.; Wu, R.; Li, Y. ACS Catal. 2018, 8, 10641.
[21]
Shi, T.; Li, H.; Yao, L.; Ji, W.; Au, C.-T. Appl. Catal. A-Gen. 2012, 425-426, 68.
[22]
Chen, J. L.; Xu, F.; Ma, F. Q.; Ren, M. N.; Zhou, J. D.; Yu, Z. Q.; Su, W. K. J. Flow Chem. 2021, 11, 823.
[23]
Deshpande, R. M.; Mahajan, A. N.; Diwakar, M. M.; Ozarde, P. S.; Chaudhari, R. V. J. Org. Chem. 2004, 69, 4835.
[24]
Liang, X.; Fu, N.; Yao, S.; Li, Z.; Li, Y. Nat. Commun. 2022, 144, 18155.
[25]
Gan, T.; Wang, D. Nano Res. 2023, doi: 10.1007/s12274-023-5700-4.
[26]
Li, R.; Wang, D. Nano Res. 2022, 15, 6888.
[27]
Li, J.; Li, Y.; Zhang, T. Sci. China Mater. 2020, 63, 889.
[28]
Li, L. L.; Liu, Y.; Song, S. Y.; Zhang, H. J. Acta Chim. Sinica 2022, 80, 16 (in Chinese).
[28]
(李玲玲, 刘宇, 宋术岩, 张洪杰, 化学学报, 2022, 80, 16.)
[29]
Hao, Y.-C.; Chen, L.-W.; Li, J.; Guo, Y.; Su, X.; Shu, M.; Zhang, Q.; Gao, W.-Y.; Li, S.; Yu, Z.-L. Nat. Commun. 2021, 12, 2682.
[30]
Guo, X.; Lin, S.; Gu, J.; Zhang, S.; Chen, Z.; Huang, S. ACS Catal. 2019, 9, 11042.
[31]
Lu, X. Q.; Cao, S. F.; Wei, X. F.; Li, S. R.; Wei, S. X. Acta Chim. Sinica 2020, 78, 1001 (in Chinese).
[31]
(鲁效庆, 曹守福, 魏晓飞, 李邵仁, 魏淑贤, 化学学报, 2020, 78, 1001.)
[32]
Zhao, R. Y.; Ji, G. P.; Liu, Z. M. Chem. J. Chin. Univ. 2022, 43, 189 (in Chinese).
[32]
(赵润瑶, 纪桂鹏, 刘志敏, 高等学校化学学报, 2022, 43, 189.) (in Chinese).
[33]
Jin, X. Y.; Zhang, L. B.; Sun, X. P.; Han, B. X. Chem. J. Chin. Univ. 2022, 43, 11 (in Chinese).
[33]
(金湘元, 张礼兵, 孙晓甫, 韩布兴, 高等学校化学学报, 2022, 43, 11.)
[34]
Zhou, W. W.; Wei, X. Y.; Xu, M. Y.; Fan, F.; Chen, Z. P.; Kang, J.; Zhang, L.; Zhou, A. N. Chinese J. Inorg. Chem. 2023, 39, 1261 (in Chinese).
[34]
(周文武, 韦晓艺, 徐梦宇, 樊飞, 陈治平, 康洁, 张乐, 周安宁, 无机化学学报, 2023, 39, 1261.)
[35]
Huang, J.; Yang, S.; Jiang, S.; Sun, C.; Song, S. ACS Catal. 2022, 12, 14708.
[36]
Hu, L.; Huang, J.; Wang, J.; Jiang, S.; Sun, C.; Song, S. Appl. Catal. B-Environ. 2023, 320, 121945.
[37]
Jiao, L.; Xu, W.; Wu, Y.; Yan, H.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Chem. Soc. Rev. 2021, 50, 750.
[38]
Zhang, X.; Li, G.; Chen, G.; Wu, D.; Zhou, X.; Wu, Y. Coordin. Chem. Rev. 2020, 418, 213376.
[39]
Lu, C.; Fang, R.; Chen, X. Adv. Mater. 2020, 32, 1906548.
[40]
Liang, Z.; Shen, J.; Xu, X.; Li, F.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Adv. Mater. 2022, 34, 2200102.
[41]
Jagadeesh, R. V.; Murugesan, K.; Alshammari, A. S.; Neumann, H.; Pohl, M.-M.; Radnik, J.; Beller, M. Science 2017, 358, 326.
[42]
Li, M.; Chen, S.; Jiang, Q.; Chen, Q.; Guo, X. ACS Catal. 2021, 11, 3026.
[43]
Zhou, D.; Zhang, L.; Liu, X.; Qi, H.; Liu, Q.; Yang, J.; Su, Y.; Ma, J.; Yin, J.; Wang, A. Nano Res. 2022, 15, 519.
[44]
Song, Z.; Zhang, L.; Doyle-Davis, K.; Fu, X.; Luo, J. L.; Sun, X. Adv. Energy Mater. 2020, 10, 2001561.
[45]
Ma, S.; Han, W.; Han, W.; Dong, F.; Tang, Z. J. Mater. Chem. A 2023, 11, 3315.
[46]
Hwang, J. Korean J. Chem. Eng. 2021, 38, 1104.
[47]
Ou, J.; Xiang, J.; Liu, J.; Sun, L. ACS Appl. Mater. Interfaces 2019, 11, 14862.
[48]
Ou, J.; Hu, B.; He, S.; Wang, W.; Han, Y. Sol. Energy 2020, 201, 693.
[49]
Ou, J.; He, S.; Wang, W.; Tan, H.; Liu, K. Org. Chem. Front. 2021, 8, 3102.
[50]
Ou, J.; Tan, H.; He, S.; Wang, W.; Hu, B.; Yu, G.; Liu, K. J. Org. Chem. 2021, 86, 14974.
[51]
Liu, K.-J.; Wang, Z.; Lu, L.-H.; Chen, J.-Y.; Zeng, F.; Lin, Y.-W.; Cao, Z.; Yu, X.; He, W.-M. Green Chem. 2021, 23, 496.
[52]
Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; Zhou, G.; Wei, S.; Li, Y. Angew. Chem. Int. Ed. 2016, 55, 10800.
[53]
Li, X.; Surkus, A. E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Brückner, A.; Beller, M. Angew. Chem. Int. Ed. 2020, 59, 15849.
[54]
Cao, Y.; Liu, K.; Wu, C.; Zhang, H.; Zhang, Q. Appl. Catal. A-Gen. 2020, 592, 117434.
[55]
Huang, H.; Tan, M.; Wang, X.; Zhang, M.; Guo, S.; Zou, X.; Lu, X. ACS Appl. Mater. Interfaces 2018, 10, 5413.
文章导航

/