智能二维光子晶体水凝胶精准检测Hg2+
收稿日期: 2023-10-09
网络出版日期: 2023-12-11
基金资助
项目受国家自然科学基金(21663032); 项目受国家自然科学基金(22061041); 陕西省科技资源开放共享平台项目(2021PT-004)
Smart Two-dimensional Photonic Crystal Hydrogel for Accurate Detection of Hg2+
Received date: 2023-10-09
Online published: 2023-12-11
Supported by
National Natural Science Foundation of China(21663032); National Natural Science Foundation of China(22061041); Open Sharing Platform for Scientific and Technological Resources of Shaanxi Province(2021PT-004)
结合二维光子晶体的德拜衍射效应和水凝胶的体积相转变特性, 开发了一种智能二维光子晶体水凝胶, 用于精准检测Hg2+. 采用“三明治”法制备了聚苯乙烯二维光子晶体阵列嵌入的聚(丙烯酰胺-烯丙基硫脲)水凝胶. 水凝胶链上功能基团的N、O、S等原子与Hg2+选择性配位, 缩短了水凝胶链之间的距离, 增加了水凝胶的交联密度, 使其收缩, 导致二维光子晶体的聚苯乙烯微球间距缩小, 德拜衍射环直径变大. 通过监测二维光子晶体水凝胶响应前后的德拜衍射环直径, 获知微球间距变化, 实现了高灵敏、高选择性、快速、可逆检测Hg2+. 线性检测范围为10~100 nmol/L和25~200 μmol/L, 最低检测限3.32 nmol/L. 所制智能二维光子晶体水凝胶已成功应用于化妆品及水样中Hg2+的检测. 该方法测试简单, 只需激光笔和刻度尺, 无需精密的仪器设备, 可实现便携式检测, 为金属离子检测提供了新思路.
史雨晴 , 储名珠 , 韩波 , 马豪杰 , 李然 , 侯雪艳 , 张玉琦 , 王记江 . 智能二维光子晶体水凝胶精准检测Hg2+[J]. 化学学报, 2024 , 82(1) : 9 -15 . DOI: 10.6023/A23100443
A smart two-dimensional photonic crystal (2DPC) hydrogel was developed for accurate detection of Hg2+ by combining the Debye diffraction effect of 2DPC and the volume phase transition characteristic of hydrogel. The polystyrene (PS) 2DPC arrays were first fabricated by needle-tip-flow method, in which the monodispersed PS microspheres were orderly self-assembled on the water surface to form PS 2DPC and then transferred to glass slide. The poly(acrylamide-allylthiourea) hydrogels embedded with the PS 2DPC arrays were fabricated by “sandwich” method, in which the polymerization precursor solution including monomers acrylamide and allylthiourea was added to the PS 2DPC surface and covered with a glass slide, followed by photopolymerization. The atoms including N, O and S from functional groups on the hydrogel chains selectively coordinated with Hg2+, shortening the distance between the hydrogel chains and increasing the crosslinking density of the hydrogel. As a result, the hydrogel shrank and the PS microsphere spacing of the 2DPC decreased, which increased the diameter of the Debye diffraction ring. The microsphere spacing changes were acquired by monitoring Debye diffraction ring diameters before and after the response of the 2DPC hydrogel, achieving the highly sensitive, selective, reversible and fast detection of Hg2+. The linear detection ranges were in 10~100 nmol/L and 25~200 μmol/L, and the limit of detection was found to be 3.32 nmol/L. The prepared smart 2DPC hydrogel was used to detect Hg2+ in cosmetics and water samples to evaluate its practicability. The recovery for the detection of Hg2+ was 98.8%~102.6% and the relative standard deviation was 0.57%~1.09% for a commercially lipstick, and they were 97.2%~103.4% and 0.61%~0.99% for the tap water, respectively. The results demonstrated that our constructed smart 2DPC hydrogels have good applicability, accuracy and reliability for the detection of Hg2+ in real samples. The method is simple for testing, only requiring a laser pointer and a ruler, without needing sophisticated instruments, and it can realize portable detection, providing a new strategy for detecting metal ions.
[1] | Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059. |
[2] | John, S. Phys. Rev. Lett. 1987, 58, 2486. |
[3] | Zhao, C.; Ma, Y.; Wang, Y.; Zhou, X.; Li, H. Z.; Li, M. Z.; Song, Y. L. Acta Chim. Sinica 2018, 76, 9. (in Chinese) |
[3] | (赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林, 化学学报, 2018, 76, 9.) |
[4] | Bertucci, S.; Megahd, H.; Dodero, A.; Fiorito, S.; Stasio, F. D.; Patrini, M.; Comoretto, D.; Lova, P. ACS Appl. Mater. Interfaces 2022, 14, 19806. |
[5] | Wang, W. T.; Zhao, G. C.; Yang, L.; Zhou, Y. C.; Ding, L. M. Acta Chim. Sinica 2022, 80, 1576. (in Chinese) |
[5] | (王文涛, 赵高崇, 杨柳, 周意诚, 丁黎明, 化学学报, 2022, 80, 1576.) |
[6] | Foelen, Y.; Schenning, A. P. H. J. Sci. Adv. 2022, 9, 2200399. |
[7] | Shen, P.; Zhang, Y.; Cai, Z.; Liu, R.; Xu, X.; Li, R.; Wang, J.-J.; Yang, D. J. Mater. Chem. C 2021, 9, 5840. |
[8] | Pei, G. C.; Wang, J. X.; Jiang, L. Acta Chim. Sinica 2021, 79, 414. (in Chinese) |
[8] | (裴广晨, 王京霞, 江雷, 化学学报, 2021, 79, 414.) |
[9] | Prevo, B. G.; Velev, O. D. Langmuir 2004, 20, 2099. |
[10] | Cai, Z.; Zhang, J.-T.; Xue, F.; Hong, Z.; Punihaole, D.; Asher, S. A. Anal. Chem. 2014, 86, 4840. |
[11] | Yang, L. M. Ph.D. Dissertation, Shanghai University, Shanghai, 2005. (in Chinese) |
[11] | (杨黎明, 博士论文, |
[12] | Murtaza, G.; Rizvi, A. S.; Xue, M.; Qiu, L.; Meng, Z. Anal. Chem. 2022, 94, 7391. |
[13] | Rizvi, A. S.; Murtaza, G.; Zhang, W.; Xue, M.; Qiu, L.; Meng, Z. J Pharmaceut. Biomed. 2023, 227, 115104. |
[14] | Chen, Q.; Wang, S.; Huang, T.; Xiao, F.; Wu, Z.; Yu, R. Anal. Chem. 2022, 94, 5530. |
[15] | Chen, Q.; Wu, L.; Zhao, F.; Liu, B.; Wu, Z.; Yu, R. Food Chem. 2023, 418, 135891. |
[16] | Shen, P.; Jang, K.; Cai, Z.; Zhang, Y.; Asher, S. A. Microchim. Acta 2022, 189, 418. |
[17] | Shen, P.; Shi, Y.; Li, R.; Han, B.; Ma, H.; Hou, X.; Zhang, Y.; Jiang, L. Biosensors 2022, 12, 662. |
[18] | Shen, P.; Li, M.; Li, R.; Han, B.; Ma, H.; Hou, X.; Zhang, Y.; Wang, J.-J. NPG Asia Mater. 2022, 14, 94. |
[19] | Liu, R.; Cai, Z.; Zhang, Q.; Yuan, H.; Zhang, G.; Yang, D. Sens. Actuators B Chem. 2022, 354, 131236. |
[20] | Du, W.; Liu, J.; Li, H.; Deng, C.; Luo, J.; Feng, Q.; Tan, Y.; Yang, S.; Wu, Z.; Xiao, F. Anal. Chem. 2023, 95, 4220. |
[21] | Holtz, J. H.; Asher, S. A. Nature 1997, 389, 829. |
[22] | Asher, S. A.; Sharma, A. C.; Goponenko, A. V.; Ward, M. M. Anal. Chem. 2003, 75, 1676. |
[23] | Ye, B.-F.; Zhao, Y.-J.; Cheng, Y.; Li, T.-T.; Xie, Z.-Y.; Zhao, X.-W.; Gu, Z.-Z. Nanoscale 2012, 4, 5998. |
[24] | Qin, J.; Dong, B.; Li, X.; Han, J.; Gao, R.; Su, G.; Cao, L.; Wang, W. J. Mater. Chem. C 2017, 5, 8482. |
[25] | Liu, C. H.; Liu, G. Q.; Ren, C. R.; Shi, H. K.; Xue, K.; Cao, Y. L.; Li, H. H.; Liu, J. X. Acta Polym. Sinica 2020, 51, 762. (in Chinese) |
[25] | (刘晨辉, 刘根起, 任宸锐, 史红凯, 薛珂, 曹云雷, 李欢欢, 刘建勋, 高分子学报, 2020, 51, 762.) |
[26] | Zhao, Q.; Zhang, H.; Fu, H.; Wei, Y.; Cai, W. J. Hazard. Mater. 2020, 398, 122890. |
[27] | Jiang, G.; Miao, Y.; Wang, J.; Shao, H.; Chen, H.; Tao, P.; Wang, W.; Yu, Q.; Peng, W.; Zhou, X. Sensor. Actuat. A Phys. 2023, 256, 114343. |
[28] | Cheng, F.; Zhang, S.; Zhang, L.; Sun, J.; Wu, Y. Colloid. Surface. A 2022, 636, 128149. |
[29] | Liu, L.; Peng, M.; Liang, Z.; Wu, H.; Yan, H.; Zhou, Y.-G. Anal. Chim. Acta 2023, 1276, 341638. |
[30] | Zhang, J.-T.; Wang, L.; Lamont, D. N.; Velankar, S. S.; Asher, S. A. Angew. Chem. Int. Ed. 2012, 51, 6117. |
[31] | Kou, D.; Ma, W.; Zhang, S. Adv. Funct. Mater. 2021, 31, 2007032. |
[32] | Safety and Technical Standards for Cosmetics, 2022, p. 157. (in Chinese) |
[32] | (化妆品安全技术规范, 2022, p. 157.) |
/
〈 |
|
〉 |