镍催化氮杂环丙烷的开环偶联反应研究
收稿日期: 2023-11-17
网络出版日期: 2023-12-21
基金资助
国家自然科学基金(22201201); 浙江省自然科学基金(LY23B020001); 浙江省万人计划项目(2020R52021)
Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines
Received date: 2023-11-17
Online published: 2023-12-21
Supported by
National Natural Science Foundation of China(22201201); Natural Science Foundation of Zhejiang Province(LY23B020001); Zhejiang Provincial Ten Thousand Talent Program(2020R52021)
氮杂环丙烷类化合物是重要的有机合成子, 其广泛存在于各种有机合成反应当中. 因其独特的三元环结构, 致使其具有较大的环张力. 通常氮杂环丙烷类化合物可以与各种亲核试剂反应, 合成各种传统方法难以合成的β-位取代的胺类化合物, 其中包括氨基醇、氨基醚以及二胺类化合物. 通过亲核试剂开氮杂环丙烷的反应研究已经相当成熟, 此处不再赘述. 此外, 过渡金属催化的C—N活化是一类重要的合成方法. 作为C—N活化重要底物, 过渡金属催化氮杂环丙烷的开环偶联反应取得长足的发展. 尤其是近十年来, 镍催化氮杂环丙烷的开环偶联反应不断涌现. 基于此, 综述了镍催化在氮杂环丙烷开环偶联反应中的研究进展和设计原则, 重点介绍氮杂环丙烷的开环原理, 对比不同取代的氮杂环丙烷区域选择性, 总结不同催化模式下的共性. 本综述将从以下三个方面介绍氮杂环丙烷的开环偶联反应: 其一是单独的镍催化模式; 其二是光/镍协同共催化模式; 其三则是电化学促进的镍催化模式. 对于氮杂环丙烷的开环模式则可以分为: 镍催化的SN2型亲核开环模式、卤素离子亲核开环模式以及电化学还原模式.
陈健强 , 朱钢国 , 吴劼 . 镍催化氮杂环丙烷的开环偶联反应研究[J]. 化学学报, 2024 , 82(2) : 190 -212 . DOI: 10.6023/A23110503
Aziridines are among the most important building blocks in modern organic synthesis due to their proclivity to ring-opening with a wide range of nucleophiles. This small nitrogen-containing ring system is a highly strained molecule, and C—N fragmentation allows it to be used as the precursor for various scaffolds (including amino alcohols, amino ethers, and diamines) that are not readily accessible through conventional methods. The driving force for this C—N activation is the release of ring strain. In conclusion, significant advances in this filed have been realized with various of nucleophiles. On the other hand, the use of transition metal for C—N activation is one of the most significant methods for the construction of complex molecules. Transition metal-catalyzed ring opening cross-coupling of aziridines have received much attention in recent years. Over the past decades, many groups have described approaches to engage aziridines as electrophiles in nickel-catalyzed cross-coupling. This paper reviews the recent advances in nickel-catalyzed ring opening cross-coupling of aziridines, focuses on the ring-opening methodology, compares the regioselective of the different aziridines, and summarizes generalities of these strategies. We split this paper into three sections consisting of construction of β-functionalized amines via Ni-catalyzed, dual photoredox/Ni-catalyzed, and Ni-catalyzed electrochemical cross-coupling of aziridines. Traditional methods for the ring-opening of aziridines include (1) nickel-catalyzed SN2 nucleophilic ring-opening, (2) nucleophilic halide ring-opening, and (3) electro-induced ring-opening.
Key words: aziridines; nickel catalysis; photocatalysis; C—N activation; radical
[1] | Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O’Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R. Chem. Rev. 1969, 69, 279. |
[2] | (a) Singh, G. S.; D’hooghe, M.; De Kimpe, N. Chem. Rev. 2007, 107, 2080. |
[2] | (b) McCoull, W.; Davis, F. A. Synthesis 2000, 1347. |
[3] | (a) Hu, X. E. Tetrahedron 2004, 60, 2701. |
[3] | (b) Sabir, S.; Kumar, G.; Verma, V. P.; Jat, J. L. ChemistrySelect 2018, 3, 3702. |
[4] | (a) Takeda, Y.; Sameera, W. M. C.; Minakata, S. Acc. Chem. Res. 2020, 53, 1686. |
[4] | (b) Du, Q.; Zhang, L.; Gao, F.; Wang, L.; Zhang, W. Chin. J. Org. Chem. 2022, 42, 3240. (in Chinese) |
[4] | (杜青锋, 张璐, 高峰, 王乐, 张万斌, 有机化学, 2022, 42, 3240.) |
[5] | (a) Alper, H.; Urso, F.; Smith, D. J. H. J. Am. Chem. Soc. 1983, 105, 6737. |
[5] | (b) Calet, S.; Urso, F.; Alper, H. J. Am. Chem. Soc. 1989, 111, 931. |
[6] | (a) Piotti, M. E.; Alper, H. J. Am. Chem. Soc. 1996, 118, 111. |
[6] | (b) Davoli, P.; Moretti, I.; Prati, F.; Alper, H. J. Org. Chem. 1999, 64, 518. |
[6] | (c) Mahadevan, V.; Getzler, Y. D. Y. L.; Coates, G. W. Angew. Chem., Int. Ed. 2002, 41, 2781. |
[7] | Takeda, Y.; Sameera, W. M. C.; Minakata, S. Acc. Chem. Res. 2020, 53, 1686. |
[8] | (a) Zhang, Z.; Gong, L.; Zhou, X.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Acta Chim. Sinica 2019, 77, 783. (in Chinese) |
[8] | (张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783.) |
[8] | (b) Yang, M.; Ye, B.; Chen, J.; Wu, J. Acta Chim. Sinica 2022, 80, 11. (in Chinese) |
[8] | (杨民, 叶柏柏, 陈健强, 吴劼, 化学学报, 2022, 80, 11.) |
[8] | (c) Hou, H.; Cheng, Y.; Chen, B.; Tung, C.; Wu, L. Chin. J. Org. Chem. 2023, 43, 1012. (in Chinese) |
[8] | (侯虹宇, 程元元, 陈彬, 佟振合, 吴骊珠, 有机化学, 2023, 43, 1012.) |
[8] | (d) Chen, J.; Zhu, G.; Wu, J. Acta Chim. Sinica 2023, 81, 1609. (in Chinese) |
[8] | (陈健强, 朱钢国, 吴劼, 化学学报, 2023, 81, 1609.) |
[8] | (e) Chen, J.-Q.; Tu, X.; Tang, Q.; Li, K.; Xu, L.; Wang, S.; Ji, M.; Li, Z.; Wu, J. Nat. Commun. 2021, 12, 5328. |
[8] | (f) Ji, M.; Xu, L.; Luo, X.; Jiang, M.; Wang, S.; Chen, J.; Wu, J. Org. Chem. Front. 2021, 8, 6704. |
[8] | (g) Chen, J.-Q.; Luo, X.; Chen, M.; Chen, Y.; Wu, J. Org. Lett. 2023, 25, 1978. |
[9] | (a) Yoshida, J.-I.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702. |
[9] | (b) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230. |
[9] | (c) Wang, Z.; Ma, C.; Fang, P.; Xu, H.; Mei, T. Acta Chim. Sinica 2022, 80, 1115 (in Chinese) |
[9] | (王振华, 马聪, 方萍, 徐海超, 梅天胜, 化学学报, 2022, 80, 1115) |
[10] | (a) Chen, J.-Q.; Liu, N.; Hu, Q.; Liu, J.; Wu, J.; Cai, Q.; Wu, J. Org. Chem. Front. 2021, 8, 5316. |
[10] | (b) Chen, J.-Q.; Tu, X.; Qin, B.; Huang, S.; Zhang, J.; Wu, J. Org. Lett. 2022, 24, 642. |
[10] | (c) Qin, B.; Huang, S.; Chen, J.-Q.; Xiao, W.; Wu, J. Org. Chem. Front. 2022, 9, 3521. |
[10] | (d) Wang, X.; Chen, Y.; Liang, P.; Chen, J.-Q.; Wu, J. Green Chem. 2022, 24, 5077. |
[10] | (e) Wang, X.; Chen, Y.; Liang, P.; Chen, J.-Q.; Wu, J. Org. Chem. Front. 2022, 9, 4328. |
[10] | (f) Chen, J.-Q.; Chen, Q.; Chen, B.; Wu, J. Org. Chem. Front. 2023, 10, 2018. |
[10] | (g) Chen, M.; Sun, W.; Yang, J.; Yuan, L.; Chen, J.-Q.; Wu, J. Green Chem. 2023, 25, 3857. |
[11] | (a) Ananikov, V. P. ACS Catal. 2015, 5, 1964. |
[11] | (b) Chen, J.; Wu, J. Chin. J. Org. Chem. 2022, 42, 921. (in Chinese) |
[11] | (陈健强, 吴劼, 有机化学, 2022, 42, 921.) |
[11] | (c) Ruan, L.; Dong, Z.; Chen, C.; Wu, S.; Sun, J. Chin. J. Org. Chem. 2017, 37, 2544. (in Chinese) |
[11] | (阮利衡, 董振诚, 陈春欣, 吴爽, 孙京, 有机化学, 2017, 37, 2544.) |
[12] | Lin, B. L.; Clough, C. R.; Hillhouse, G. L. J. Am. Chem. Soc. 2002, 124, 2890. |
[13] | Ravn, A. K.; Vilstrup, M. B. T.; Noerby, P.; Nielsen, D. U; Daasbjerg, K.; Skrydstrup, T. J. Am. Chem. Soc. 2019, 141, 11821. |
[14] | Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2012, 134, 9541. |
[15] | Nielsen, D. K.; Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2013, 135, 13605. |
[16] | Jensen, K. L.; Standley, E. A.; Jamison, T. F. J. Am. Chem. Soc. 2014, 136, 11145. |
[17] | Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2015, 137, 5638. |
[18] | Jensen, K. L.; Nielsen, D. U.; Jamison, T. F. Chem. Eur. J. 2015, 21, 7379. |
[19] | (a) Woods, B. P.; Orlandi, M.; Huang, C.-Y.; Sigman, M. S.; Doyle, A. G. J. Am. Chem. Soc. 2017, 139, 5688. |
[19] | (b) Woods, B. P.; Orlandi, M.; Huang, C.-Y.; Sigman, M. S.; Doyle, A. G. J. Am. Chem. Soc. 2018, 140, 774. |
[20] | Liu, S.; Wang, S.-L.; Wan, J.; Peng, S.; Zhang, J.-R.; Ding, H.-J.; Zhang, B.; Ni, H.-L.; Cao, P.; Hu, P.; Wang, B.-Q.; Chen, B. Org. Lett. 2023, 25, 6582. |
[21] | Davies, J.; Janssen-Müller, D.; Zimin, D. P.; Day, C. S.; Yanagi, T.; Elfert, J.; Martin, R. J. Am. Chem. Soc. 2021, 143, 4949. |
[22] | Tang, W.; Fan, P. Org. Lett. 2023, 25, 5756. |
[23] | Xu, S.; Hirano, K.; Miura, M. Org. Lett. 2021, 23, 5471. |
[24] | Yu, X.-Y.; Zhou, Q.-Q.; Wang, P.-Z.; Liao, C.-M.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2018, 20, 421. |
[25] | Steiman, T. J.; Liu, J.; Mengiste, A.; Doyle, A. G. J. Am. Chem. Soc. 2020, 142, 7598. |
[26] | Xu, C.-H.; Li, J.-H.; Xiang, J.-N.; Deng, W. Org. Lett. 2021, 23, 3696. |
[27] | Fan, P.; Jin, Y.; Liu, J.; Wang, R.; Wang, C. Org. Lett. 2021, 23, 7364. |
[28] | Dongbang, S.; Doyle, A. G. J. Am. Chem. Soc. 2022, 144, 20067. |
[29] | Mori, Y.; Hayashi, M.; Sato, R.; Tai, K.; Nagase, T. Org. Lett. 2023, 25, 5569. |
[30] | Wang, Y.-Z.; Wang, Z.-H.; Eshel, I. L.; Sun, B.; Liu, D.; Gu, Y.-C.; Milo, A.; Mei, T.-S. Nat. Commun. 2023, 14, 2322. |
[31] | Yang, G.; Wang, Y.; Qiu, Y. Chem. Eur. J. 2023, 29, e202300959. |
[32] | Kumar, G. S.; Zhu, C.; Kancherla, R.; Shinde, P. S.; Rueping, M. ACS Catal. 2023, 13, 8813. |
[33] | Hu, X.; Cheng-Sánchez, I.; Cuesta-Galisteo, S.; Nevado, C. J. Am. Chem. Soc. 2023, 145, 6270. |
/
〈 |
|
〉 |