研究论文

苯基取代苯并二噻吩二酮构建新型聚合物及其光伏性能研究

  • 邓燧楠 ,
  • 刘海珍 ,
  • 张连杰 ,
  • 罗文君 ,
  • 罗妹 ,
  • 张泽升 ,
  • 梁嘉豪 ,
  • 王新康 ,
  • 陈军武
展开
  • 华南理工大学 高分子光电材料与器件研究所 发光材料与器件国家重点实验室 广州 510640

收稿日期: 2023-10-08

  网络出版日期: 2023-12-28

基金资助

国家自然科学基金(22179040); 国家自然科学基金(51521002); 国家重点研发计划(2019YFA0705900); 广东省基础与应用基础研究重大项目(2019B030302007); 广东省自然科学基金(2022A1515011633)

Construction of Novel Polymers with Phenyl Substituted Benzodithiophenedione for Photovoltaic Performance Study

  • Suinan Deng ,
  • Haizhen Liu ,
  • Lianjie Zhang ,
  • Wenjun Luo ,
  • Mei Luo ,
  • Zesheng Zhang ,
  • Jiahao Liang ,
  • Xinkang Wang ,
  • Junwu Chen
Expand
  • Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

Received date: 2023-10-08

  Online published: 2023-12-28

Supported by

National Natural Science Foundation of China(22179040); National Natural Science Foundation of China(51521002); National Key Research and Development Program of China(2019YFA0705900); Basic and Applied Basic Research Major Program of Guangdong Province(2019B030302007); Natural Science Foundation of Guangdong Province(2022A1515011633)

摘要

随着材料和器件的不断发展, 有机光伏(OPV)的器件效率不断提升, 但制备仍存在较多额外加工工艺, 不利于其大规模生产. 如何合理调控活性层材料的溶解性、结晶性和两相形貌来简化器件制备工艺, 实现高性能的as-cast器件将十分具有科学意义. 本工作通过设计合成苯基取代的苯并二噻吩二酮单元(二维BDD)作为共聚单元, 制备了三种新型聚合物材料. 当二维BDD单元摩尔分数为10%时, FBDT-m10能实现良好的聚集性能和加工性能, 与Y6-BO共混制备的as-cast器件就可以得到良好的活性层形貌, 最终实现了71.14%的填充因子及16.06%的器件效率.

本文引用格式

邓燧楠 , 刘海珍 , 张连杰 , 罗文君 , 罗妹 , 张泽升 , 梁嘉豪 , 王新康 , 陈军武 . 苯基取代苯并二噻吩二酮构建新型聚合物及其光伏性能研究[J]. 化学学报, 2024 , 82(3) : 257 -264 . DOI: 10.6023/A23100439

Abstract

Owing to the continuous development of materials and devices, the power conversion efficiency (PCE) of organic photovoltaics (OPV) has been improved continuously. However, there are some extra treatments used, which are not conducive to the large-scale production of OPV. Reasonably adjusting the solubility, crystallinity, and phase morphology of active layer could be of great importance to simplify processibility and directly obtain high-performance as-cast devices. In this work, a new phenyl substituted benzodithiophenedione unit (m-PhEh-BDD) was designed and synthesized through a facile selective acylation due to the aromatic difference between benzene and thiophene rings. When m-PhEh-BDD used as the third unit to modify the PM6, two new random polymers, namely FBDT-m10 and FBDT-m20 were obtained successfully. For direct comparison, the m-PhEh-BDD-based alternating polymer FBDT-m100 was also synthesized. With the mole content of m-PhEh-BDD moiety increasing, the highest occupied molecular orbital (HOMO) levels of the polymers gradually downshift but their bandgap values almost are identical. Moreover, FBDT-m100 shows less aggregation ability than PM6, suggesting that m-PhEh-BDD unit can modulate the aggregation behavior. Owing to the suitable aggregation and processibility, FBDT-m10 with moderate content of m-PhEh-BDD exhibits the best compatibility with non-fullerene acceptor Y6-BO, resulting in the superior blend morphology. Therefore, the as-cast devices based on FBDT-m10 can obtain the champion PCE of 16.06%, with a good fill factor of 71.14%. Additionally, the FBDT-m10-based device shows better storage stability than that based on PM6. After 7 d of storage, FBDT-m10-based device can maintain 87% of its initial PCE whereas the PM6-based device only kept 58% of its initial PCE. When the m-PhEh-BDD content increasing, the as-cast devices of the same storage time encounter a decrease in PCE, indicating suitable m-PhEh-BDD content is beneficial for long-term stability. This work demonstrates that the further exploitation on phenyl-substituted benzodithiophenedione unit could be a potential venue to achieve promising polymers for high-performing and stable organic solar cells.

参考文献

[1]
Wang, J.; Liu, K.; Ma, L.; Zhan, X. Chem. Rev. 2016, 116, 14675.
[2]
Cui, Y.; Wang, Y.; Bergqvist, J.; Yao, H.; Xu, Y.; Gao, B.; Yang, C.; Zhang, S.; Inganas, O.; Gao, F.; Hou, J. Nat. Energy 2019, 4, 768.
[3]
Fukuda, K.; Yu, K.; Someya, T. Adv. Energy Mater. 2020, 10, 2000765.
[4]
Brabec, C. J.; Heeney, M.; McCulloch, I.; Nelson, J. Chem. Soc. Rev. 2011, 40, 1185.
[5]
Li, G.; Zhu, R.; Yang, Y. Nat. Photon. 2012, 6, 153.
[6]
Bai, Y.; Xue, L.; Wang, H.; Zhang, Z. Acta Chim. Sinica 2021, 79, 820 (in Chinese).
[6]
(白阳, 薛灵伟, 王海侨, 张志国, 化学学报, 2021, 79, 820.)
[7]
Chen, S.; Feng, L.; Jia, T.; Jing, J.; Hu, Z.; Zhang, K.; Huang, F. Sci. China Chem. 2021, 64, 1192.
[8]
Zhan, X.; Li, Y. Sci. China Chem. 2018, 61, 637.
[9]
Liu, Z.; Li, T.; Lin, Y. Chin. J. Chem. 2023, 41, 3739.
[10]
Liu, Y.; Liu, J.; Zhang, L.; Fang, J.; Zhang, W.; Liu, Z. Chin. J. Org. Chem. 2014, 34, 1021 (in Chinese).
[10]
(刘艳姣, 刘菁, 张林骅, 方俊锋, 张文俊, 刘治田, 有机化学, 2014, 34, 1021.)
[11]
Li, T.; Zhan, X. Acta Chim. Sinica 2021, 79, 257 (in Chinese).
[11]
(李腾飞, 占肖卫, 化学学报, 2021, 79, 257.)
[12]
Zhu, W.; Spencer, A. P.; Mukherjee, S.; Alzola, J. M.; Sangwan, V. K.; Amsterdam, S. H.; Swick, S. M.; Jones, L. O.; Heiber, M. C.; Herzing, A. A.; Li, G.; Stern, C. L.; DeLongchamp, D. M.; Kohlstedt, K. L.; Hersam, M. C.; Schatz, G. C.; Wasielewski, M. R.; Chen, L. X.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2020, 142, 14532.
[13]
Ye, L.; Cai, Y.; Li, C.; Zhu, L.; Xu, J.; Weng, K.; Zhang, K.; Huang, M.; Zeng, M.; Li, T.; Zhou, E.; Tan, S.; Hao, X.; Yi, Y.; Liu, F.; Wang, Z.; Zhan, X.; Sun, Y. Energy Environ. Sci. 2020, 13, 5117.
[14]
Yu, Y.; Sun, R.; Wang, T.; Yuan, X.; Wu, Y.; Wu, Q.; Shi, M.; Yang, W.; Jiao, X.; Min, J. Adv. Funct. Mater. 2021, 31, 2102853.
[15]
Fu, J.; Chen, S.; Yang, K.; Jung, S.; Lv, J.; Lan, L.; Chen, H.; Hu, D.; Yang, Q.; Duan, T.; Kan, Z.; Yang, C.; Sun, K.; Lu, S.; Xiao, Z.; Li, Y. iScience 2020, 23, 100965.
[16]
Qin, J.; Yang, Q.; Oh, J.; Chen, S.; Odunmbaku, G. O.; Ouedraogo, N. A. N.; Yang, C.; Sun, K.; Lu, S. Adv. Sci. 2022, 9, 2105347.
[17]
Yang, Y.; Li, X.; Wang, S.; Duan, X.; Cai, Y.; Sun, X.; Wei, D.; Ma, W.; Sun, Y. Chin. J. Poly. Sci. 2023, 41, 194.
[18]
He, Y.; Wang, Q.; Jing, X.; Zhao, Y.; Gao, C.; Zhai, X.; Wang, X.; Yu, L.; Sun, M. Org. Electron. 2022, 101, 106424.
[19]
Bi, P.; Zhang, S.; Wang, J.; Ren, J.; Hou, J. Chin. J. Chem. 2021, 39, 2607.
[20]
Wang, W.; Wang, J.; Zheng, Z.; Hou, J. Acta Chim. Sinica 2020, 78, 382 (in Chinese).
[20]
(王文璇, 王建邱, 郑众, 侯剑辉, 化学学报, 2020, 78, 382.)
[21]
Liu, Y.; Liu, B.; Ma, C.-Q.; Huang, F.; Feng, G.; Chen, H.; Hou, J.; Yan, L.; Wei, Q.; Luo, Q.; Bao, Q.; Ma, W.; Liu, W.; Li, W.; Wan, X.; Hu, X.; Han, Y.; Li, Y.; Zhou, Y.; Zou, Y.; Chen, Y.; Liu, Y.; Meng, L.; Li, Y.; Chen, Y.; Tang, Z.; Hu, Z.; Zhang, Z.-G.; Bo, Z. Sci. China Chem. 2022, 65, 1457.
[22]
Pu, M.; He, F. Acta Chim. Sinica 2023, 81, 1541 (in Chinese).
[22]
(蒲明瑞, 何凤, 化学学报, 2023, 81, 1541.)
[23]
Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Joule 2022, 6, 171.
[24]
Liu, Y. C.; Zeng, Y. Y.; Liu, L.; Zhuang, C. L.; Fu, X.; Huang, W. R.; Cai, Z. M. Nat. Commun. 2014, 5, 5393.
[25]
Hu, H. W.; Chow, P. C. Y.; Zhang, G. Y.; Ma, T. X.; Liu, J.; Yang, G. F.; Yan, H. Acc. Chem. Res. 2017, 50, 2519.
[26]
Wu, J.; Li, G.; Fang, J.; Guo, X.; Zhu, L.; Guo, B.; Wang, Y.; Zhang, G.; Arunagiri, L.; Liu, F.; Yan, H.; Zhang, M.; Li, Y. Nat. Commun. 2020, 11, 4612.
[27]
Tan, X.; Li, Y.; Yuan, X.; Kim, S.; Zhang, Y.; Yang, C.; Huang, F.; Cao, Y.; Duan, C. Sci. China Chem. 2023, 66, 2347.
[28]
Liu, B.; Xu, Y.; Xia, D.; Xiao, C.; Yang, Z.; Li, W. Acta Phys.- Chim. Sin. 2021, 37, 2009056 (in Chinese).
[28]
(刘柏侨, 许韵华, 夏冬冬, 肖承义, 杨兆凡, 李韦伟, 物理化学学报, 2021, 37, 2009056.)
[29]
Sun, Y.; Gao, H.; Zhang, Y.; Wang, Y.; Kan, B.; Wan, X.; Zhang, H.; Chen, Y. Chin. J. Org. Chem. 2018, 38, 228 (in Chinese).
[29]
(孙延娜, 高欢欢, 张雅敏, 王云闯, 阚斌, 万相见, 张洪涛, 陈永胜, 有机化学, 2018, 38, 228.)
[30]
Yao, H. T.; Li, Y. K.; Hu, H. W.; Chow, P. C. Y.; Chen, S. S.; Zhao, J. B.; Li, Z. K.; Carpenter, J. H.; Lai, J. Y. L.; Yang, G. F.; Liu, Y. H.; Lin, H. R.; Ade, H.; Yan, H. Adv. Energy Mater. 2018, 8, 1701895.
[31]
Wu, Y. L.; Schneider, S.; Walter, C.; Chowdhury, A. H.; Bahrami, B.; Wu, H. C.; Qiao, Q.; Toney, M. F.; Bao, Z. N. J. Am. Chem. Soc. 2020, 142, 392.
[32]
Zhang, T.; An, C. B.; Lv, Q. L.; Qin, J. Z.; Cui, Y.; Zheng, Z.; Xu, B. W.; Zhang, S. Q.; Zhang, J. Q.; He, C.; Hou, J. H. J. Energy Chem. 2021, 59, 30.
[33]
Wu, Y.; Kong, J.; Qin, Y.; Yao, H.; Zhang, S.; Hou, J. Acta Phys.-Chim. Sin. 2019, 35, 1391 (in Chinese).
[33]
(吴仪, 孔静宜, 秦云朋, 姚惠峰, 张少青, 侯剑辉, 物理化学学报, 2019, 35, 1391.)
[34]
Kim, J.; Kyeong, M.; Ha, J.-W.; Ahn, H.; Jung, J.; Seo, S.; Phan, T. N.-L.; Lee, C.; Yoon, S. C.; Kim, B. J.; Ko, S.-J. J. Mater. Chem. A 2021, 9, 27551.
[35]
Deng, S.; Luo, W.; Zhang, L.; Xie, G.; Lei, S.; Luo, M.; Wu, Z.; Yuan, D.; Liang, J.; Xie, Z.; Chen, J. J. Mater. Chem. A 2023, 11, 3437.
文章导航

/