I2O5/KSCN介导的炔烃碘硫氰化反应
An I2O5/KSCN-Mediated Iodothiocyanation of Alkynes
Received date: 2023-12-13
Online published: 2024-01-23
Supported by
National Natural Science Foundation of China(21971116)
黄涎廷 , 韩洪亮 , 肖婧 , 王帆 , 柳忠全 . I2O5/KSCN介导的炔烃碘硫氰化反应[J]. 化学学报, 2024 , 82(1) : 5 -8 . DOI: 10.6023/A23120531
Thiocyanates are an important compound family that widely found in natural products and active pharmaceutical ingredients. In addition, their ability to function as versatile electrophiles either on sulfur or carbon centers enables them especially valuable intermediates in synthetic organic chemistry. In the past decades, considerable advances for synthesis of thiocyanates have been made. However, most of them rely on transition-metal promotion or suffer from harsh reaction conditions or limited substrate scope. Therefore, efficient and practical accesses to thiocyanates are highly desirable. Herein, we disclose herein a general and practical access to (E)-β-iodo vinylthiocyanates via iodothiocyanation of alkynes with I2O5 and KSCN. In contrast to previous methods, the present strategy holds the advantages of transition-metal free, high diasteroselectivity, scaled-up to grams and mild conditions. By treatment of the alkynes with I2O5 and KSCN at room temperature, we found that a wide variety of terminal and/or internal alkynes all gave the corresponding (E)-β-iodo vinylthiocyanates in high yields and excellent chemoselectivities. In addition, the desired (E)-β-iodo vinylthiocyanates were also obtained in good yields with both aryl and simple alkyl substituted alkynes. Interestingly, propargyl alcohol was also effective substrate. Furthermore, several propionates afforded the corresponding (E)-β-iodo vinylthiocyanates as a mixture of regio-isomers. Treatment of a herbicide clodinafop-propargyl with I2O5 and KSCN resulted in high yield of the corresponding (E)-β-iodo vinylthiocyanates, which indicated that this strategy could be applied in direct modification of drugs. Finally, this iodothiocyanation reaction can be smoothly scaled-up to gram level, which indicates it could be applied in industrial synthesis of pharmaceuticals.
Key words: iodothiocyanation; alkyne; difunctionalization; metal-free; high diasteroselectivity
[1] | Milelli, A.; Turrini, E.; Catanzaro, E.; Maffei, F.; Fimognari, C. Drug Dev. Res. 2016, 77, 437. |
[2] | Xie, W.; Wu, Y.; Zhang, J.; Mei, Q.; Zhang, Y.; Zhu, N.; Liu, R.; Zhang, H. Eur. J. Med. Chem. 2018, 145, 35. |
[3] | Cox, C.; Wack, H.; Lectka, T. Angew. Chem. Int. Ed. 1999, 38, 798. |
[4] | Haseloer, A.; Lützenburg, T.; Strache, J. P.; Neud?rfl, J.; Neundorf, I.; Klein, A. Chem. Bio. Chem. 2021, 22, 694. |
[5] | Mukerjee, A. K.; Ashare, R. Chem. Rev. 1991, 91, 1. |
[6] | Okamoto, K.; Nishibayashi, Y.; Uemura, S.; Toshimitsu, A. Angew. Chem. Int. Ed. 2005, 44, 3588. |
[7] | Sartori, G.; Neto, J. S. S.; Pesarico, A. P.; Back, D. F.; Nogueira, C. W.; Zeni, G. Org. Biomol. Chem. 2013, 11, 1199. |
[8] | Goulart, T. A. C.; Back, D. F.; Moura, S.; Silva, E.; Zeni, G. J. Org. Chem. 2021, 86, 980. |
[9] | Tian, H.; Yu, J.; Yang, H.; Zhu, C.; Fu, H. Adv. Synth. Catal. 2016, 358, 1794. |
[10] | Xu, C.; He, Z.; Kang, X.; Zeng, Q. Green Chem. 2021, 23, 7544. |
[11] | For reviews on multicomponent cascade reactions, see: (a) Zhu, J.; Bienaymé, H.; Multicomponent Reactions, Wiley-VCH, Weinheim, 2005. |
[11] | (b) Tietze, L. F.; Brasche, D. G.; Gericke, K. M. Domino Reactions in Organic Synthesis, Wiley-VCH, Weinheim, 2007. |
[11] | (c) Pellissier, H. Chem. Rev. 2013, 113, 442. |
[11] | (d) Liautard, V.; Landais, Y. In Multicomponent Reactions in Organic Synthesis, Eds.: Zhu, J.; Wang, Q.; Wang, M.-X., Wiley-VCH, Verlag GmbH & Co. KGaA, 2015, pp. 401-438. |
[11] | (e) Liu, Z.-Q. In Science of Synthesis: Free Radicals: Fundamentals and Applications in Organic Synthesis, 2020, pp. 359-386. |
[11] | For examples,see: (a) Lu, Y.-H.; Wu, C.; Hou, J.-C.; Wu, Z.-L.; Zhou, M.-H.; Huang, X.-J.; He, W.-M. ACS Catal. 2023, 13, 13071. |
[11] | (b) Ji, H.-T.; Wang, K.-L.; Ouyang, W.-T.; Luo, Q.-X.; Li, H.-X.; He, W.-M. Green Chem. 2023, 25, 7983. |
[11] | (c) Mu, S.-Y.; Li, H.-X.; Wu, Z.-L.; Peng, J.-M.; Chen, J.-Y.; He, W.-M. Chin. J. Org. Chem. 2022, 42, 4292. |
[11] | (d) Song, H.-Y.; Jiang, J.; Song, Y.-H.; Zhou, M.-H.; Wu, C.; Chen, X.; He, W.-M. Chin. Chem. Lett. 2024, 35, 109246. |
[11] | (e) Liu, Z.; Liu, Z.-Q. Org. Lett. 2017, 19, 5649. |
[11] | (f) Wang, R.; Zhao, Q.; Gu, Q.; You, S.-L. Acta Chim. Sinica 2023, 81, 431. (in Chinese) |
[11] | (王瑞祥, 赵庆如, 顾庆, 游书力, 化学学报, 2023, 81, 431.) |
[11] | (g) Han, M.; Xu, L.-H. Acta Chim. Sinica 2023, 81, 381. (in Chinese) |
[11] | (韩明亮, 徐丽华, 化学学报, 2023, 81, 381.) |
[11] | (h) Qian, X.; Xiong, P.; Xu, H.-C. Acta Chim. Sinica 2019, 77, 879. (in Chinese) |
[11] | (钱向阳, 熊鹏, 徐海超, 化学学报, 2019, 77, 879.) |
[11] | (i) Luo, J.; Ma, H.; Zhang, J.; Zhou, W.; Cai, Q. Acta Chim. Sinica 2023, 81, 898. (in Chinese) |
[11] | (罗江浩, 马浩文, 张杰豪, 周伟, 蔡倩, 化学学报, 2023, 81, 898.) |
[12] | Jiang, G.; Zhu, C.; Li, J.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2017, 359, 1208. |
[13] | Lu, L.-H.; Zhou, S.-J.; Sun, M.; Chen, J.-L.; Xia, W.; Yu, X.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 1574. |
[14] | Zeng, X.; Liu, S.; Yang, Y.; Yang, Y.; Hammond, G. B.; Xu, B. Chem 2020, 6, 1018. |
[15] | Chen, S.; Yan, Q.; Fan, J.; Gao, Y.; Yang, X.; Li, L.; Liu, Z.-Q.; Li, Z. Green Chem. 2022, 24, 4742. |
[16] | Chen, S.; Yan, Q.; Fan, J.; Guo, C.; Li, L.; Liu, Z.-Q.; Li, Z. Green Chem. 2023, 25, 153. |
/
〈 |
|
〉 |