低共熔溶剂辅助制备空心球状钙钛矿型高熵氧化物及高倍率储锂性能
收稿日期: 2023-10-25
网络出版日期: 2024-02-19
基金资助
安徽省自然科学基金(2008085ME125); 安徽省高校自然科学研究重点项目(2023AH051104)
Preparation and High-rate Lithium-ion Storage of Hollow Sphere Perovskite High-entropy Oxides Assisted by Deep Eutectic Solvents
Received date: 2023-10-25
Online published: 2024-02-19
Supported by
Natural Science Foundation of Anhui Province(2008085ME125); University Natural Science Research Project of Anhui Province in China(2023AH051104)
近年来高熵氧化物因其独特的四大效应, 作为高性能的锂离子电池(LIBs)负极材料受到广泛关注. 本研究借助于形貌和缺陷调控策略调控晶格畸变和氧空位, 以金属硝酸盐为金属源, 葡萄糖和尿素为低共熔溶剂, 采用基于低共熔溶剂辅助的固相反应法制备了La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3以及Li、Na元素掺杂的La(Li1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)O3和La(Na1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)O3钙钛矿型高熵氧化物纳米晶粉体. 测试结果表明: 所制备的高熵氧化物均为单相钙钛矿结构, 其形貌为具有介孔结构的空心球状且各组成元素分布均匀. 储锂性能表明: La(Li1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)O3电极展示了最高的比容量(电流密度200 mA•g−1下循环100圈的可逆比容量为410.0 mAh•g−1)和优异的倍率性能(100 mA•g−1电流密度下可逆比容量为342 mAh•g−1, 3000 mA•g−1电流密度下可逆比容量为169.43 mAh•g−1, 容量保持率为49.4%). 虽然La(Li1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)O3具有略小的DLi+, 但适当的晶格畸变、氧空位和较高的比表面积使其具有更高的电导率(0.072 S•cm−1)以及更小的阻抗, 从而显著提升了材料的比容量和倍率性能. 该项工作为开发出高性能LIBs的先进负极材料提供了新的设计理念和思路.
鲍梦凡 , 陈诗洁 , 邵霞 , 邓慧娟 , 冒爱琴 , 檀杰 . 低共熔溶剂辅助制备空心球状钙钛矿型高熵氧化物及高倍率储锂性能[J]. 化学学报, 2024 , 82(3) : 303 -313 . DOI: 10.6023/A23100465
In recent years, high-entropy oxides (HEOs) have attracted much attention as high-performance anode materials for lithium-ion batteries (LIBs) due to their four effects. In this study, lattice distortions and oxygen vacancies are modulated through morphology and defect modulation strategies. Perovskite-type La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3, La(Li1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)O3, and La(Na1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)O3 HEO nanocrystalline powders are synthesized through solid state reaction method assisted by deep eutectic solvents using metal nitrate as the metal source, glucose and urea as the deep eutectic solvents. The results show that the as-prepared HEOs exhibit a single perovskite phase which are hollow spherical porous structure with chemical and microstructure homogeneity. The lithium-ion storage performance shows that the La(Li1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)O3 electrode possesses the highest specific capacity (reversible specific capacity of 410.0 mAh•g−1 for 100 cycles at 200 mA•g−1) as well as the outstanding rate performance (342 mAh•g−1 at 100 mA•g−1 and 169.43 mAh•g−1 at 3000 mA•g−1 with a capacity retention rate of 49.4%). Although La(Li1/6Co1/6Cr1/6Fe1/6Mn1/6Ni1/6)O3 exhibts a smaller DLi+, the appropriate lattice distortions, oxygen vacancies and higher specific area give it a higher conductivity (0.072 S•cm−1) as well as a lower electrochemical impedance, thereby leading to the improved specific capacity and rate performance. This work provides new design concepts and ideas for developing advanced anode materials for high-performance LIBs.
| [1] | Zhang, S.; Yang, C. F.; Yang, Y. B.; Feng, N. N.; Yang, G. Acta Chim. Sinica 2022, 80, 1269 (in Chinese). |
| [1] | (张爽, 杨成飞, 杨玉波, 冯宁宁, 杨刚, 化学学报, 2022, 80, 1269.) |
| [2] | Kumari, P.; Gupta, A. K.; Mishra, R. K.; Ahmad, M. S.; Shahi, R. R. J. Magn. Magn. Mater. 2022, 554, 169142. |
| [3] | Tan, J.; Ma, L. L.; Li, Z. H.; Wang, Y.; Ye, M. X.; Shen, J. F. Mater. Today 2023, 69, 287. |
| [4] | Jia, Y. G.; Chen, S. J.; Shao, X.; Chen, J.; Fang, D. L.; Li, S. S.; Mao, A. Q.; Li, C. H. J. Adv. Ceram. 2023, 12, 1214. |
| [5] | Fracchia, M.; Coduri, M.; Ghigna, P.; Anselmi-Tamburini, U. J. Eur. Ceram. Soc. 2023, 44, 585. |
| [6] | Xiang, H. M.; Xing, Y.; DAI, F., Z.; Wang, H., J.; Su, L.; Miao, L.; Zhang, G., J.; Wang, Y., G.; Qi, X., W.; Yao, L.; Wang, H. L.; Zhao, B.; Li, J. Q.; Zhou, Y. C. J. Adv. Ceram. 2021, 10, 385. |
| [7] | Dang, R. B.; Lu, Y. X.; Rong, X. H.; Ding, F. X.; Guo, Q. B.; Xu, W. L.; Chen, L. Q.; Hu, Y. S. Chinese Sci. Bull. 2022, 67, 3546 (in Chinese). |
| [7] | (党荣彬, 陆雅翔, 容晓晖, 丁飞翔, 郭秋卜, 许伟良, 陈立泉, 胡勇胜, 科学通报, 2022, 67, 3546.) |
| [8] | Liu, Z. Y.; Liu, Y.; Xu, Y. J.; Zhang, H., L.; Shao, Z. P.; Wang, Z. B.; Chen, H. S. Green Energy Environ. 2023, 8, 1341. |
| [9] | Shao, X.; Jia, Y. G.; Cheng, J.; Fang, D. L.; Mao, A. Q.; Tan, J. Chin. J. Process Eng. 2023, 23, 771 (in Chinese). |
| [9] | (邵霞, 贾洋刚, 程婕, 方道来, 冒爱琴, 檀杰, 过程工程学报, 2023, 23, 771.) |
| [10] | Wang, P. P.; Jia, Y. G.; Shao, X.; Cheng, J.; Mao, A. Q.; Fang, D. L.; Tan, J. CIESC J. 2022, 73, 5625 (in Chinese). |
| [10] | (王朋朋, 贾洋刚, 邵霞, 程婕, 冒爱琴, 方道来, 檀杰, 化工学报, 2022, 73, 5625.) |
| [11] | Liu, X. F.; Xing, Y. Y.; Xu, K.; Zhang, H. J.; Gong, M. X.; Jia, Q. L.; Zhang, S. W.; Lei, W. Small 2022, 18, 2200524. |
| [12] | Lokcu, E.; Toparli, C.; Anik, M. ACS Appl. Mater. Interfaces 2020, 12, 23860. |
| [13] | Jia, Y. G.; Shao, X.; Cheng, J.; Wang, P. P.; Mao, A. Q. Chem. J. Chinese Universities 2022, 43, 157 (in Chinese). |
| [13] | (贾洋刚, 邵霞, 陈诗洁, 王朋朋, 冒爱琴, 高等学校化学学报, 2022, 43, 157.) |
| [14] | Wang, J. B.; Cui, Y. Y.; Wang, Q. S.; Wang, K.; Huang, X. H.; Stenzel, D.; Sarkar, A.; Azmi, R.; Bergfeldt, T.; S., S.; Sci. Rep. 2020, 10, 18430. |
| [15] | Li, S.; Peng, Z. J.; Fu, X. L. J. Adv. Ceram. 2023, 12, 59. |
| [16] | Huang, J.; Hu, L.; Yang, Z.; Li, J.; Wang, P.; Wei, Y.; Sun, P. Inorg. Chem. Commun. 2023, 150, 110458. |
| [17] | Fang, D. L.; Zhao, Y. C.; Wang, S. S.; Hu, T. S.; Zheng, C. H. Electrochim. Acta 2020, 330, 135346. |
| [18] | Chen, H.; Qiu, N.; Wu, B. Z.; Yang, Z. M.; Sun, S.; Wang, Y. RSC Adv. 2019, 9, 28908. |
| [19] | Hu, Q. L.; Yue, B.; Shao, H. Y.; Yang, F.; Wang, J. H.; Wang, Y.; Liu, J. H. J. Alloys Compd. 2021, 852, 157002. |
| [20] | Guo, M.; Liu, Y. F.; Zhang, F. N.; Cheng, F. H.; Cheng, C. F.; Miao, Y.; Gao, F.; Yu, J. J. Adv. Ceram. 2022, 11, 742. |
| [21] | Sarnecki, A.; Adamski, P.; Albrecht, A.; Komorowska, A.; Nadziejko, M.; Moszyński, D. Vacuum 2018, 155, 434. |
| [22] | He, Y.; Weststrate, C. J.; Luo, D.; Niemantsverdriet, J. W.; Wu, K.; Xu, J.; Yang, Y.; Li, Y.; Wen, X. Appl. Surf. Sci. 2021, 569, 151045. |
| [23] | Tian, K. H.; Duan, C. Q.; Ma, Q.; Li, X. L.; Wang, Z. Y.; Sun, H. Y.; Luo, S. H.; Wang, D.; Liu, Y. G. Rare Met. 2021, 41, 1265. |
| [24] | Wei, S.; Wan, C. C.; Zhang, L. Y.; Liu, X. Y.; Tian, W. Y.; Su, J. H.; Cheng, W. J.; Wu, Y. Q. Chem. Eng. J. 2022, 429, 132242. |
| [25] | Balamurugan, S.; Naresh, N.; Prakash, I.; Satyanarayana, N. Appl. Surf. Sci. 2021, 535, 147677. |
| [26] | M. Kia,, A.; Speulmanns, J.; B?nhardt, S.; Emara, J.; Kühnel, K.; Haufe, N.; Weinreich, W. Appl. Surf. Sci. 2021, 564, 150457. |
| [27] | Park, S.; Champness, C. H.; Shih, I. J. Electron Spectrosc. 2015, 205, 23. |
| [28] | Maslakov, K. I.; Teterin, Y. A.; Stefanovsky, S. V.; Kalmykov, S. N.; Teterin, A. Y.; Ivanov, K. E. J. Alloys Compd. 2017, 712, 36. |
| [29] | Song, Q.; Zhou, S.; Wang, S.; Li, S.; Xu, L.; Qiu, J. Chem. Eng. J. 2023, 461, 142033. |
| [30] | Li, L.; Meng, T.; Wang, J.; Mao, B. G.; Huang, J. B.; Cao, M. H. ACS Appl. Mater. Interfaces 2021, 13, 24804. |
| [31] | Xiao, B.; Wu, G.; Wang, T.; Wei, Z.; Sui, Y.; Shen, B.; Qi, J.; Wei, F.; Zheng, J. Nano Energy 2022, 95, 106962. |
| [32] | Xie, S.; Ping, X.; Yang, X.; Lv, P.; Li, G.; He, Y. Electrochim. Acta 2024, 474, 143541. |
| [33] | Fly, A.; Chen, R. J. Energy Storage 2020, 29, 101329. |
| [34] | Chen, T. Y.; Wang, S. Y.; Kuo, C. H.; Huang, S. C.; Lin, M. H.; Li, C. H.; Chen, H.-Y. T.; Wang, C. C.; Liao, Y. F.; Lin, C. C.; Chang, Y. M.; Yeh, J. W.; Lin, S. J.; Chen, T. Y.; Chen, H. Y. J. Mater. Chem. A 2020, 8, 21756. |
| [35] | Duan, C. Q.; Tian, K. H.; Li, X. L.; Wang, D.; Sun, H. Y.; Zheng, R. G.; Wang, Z. Y.; Liu, Y. G. Ceram. Int. 2021, 47, 32025. |
| [36] | Li, Q.; Li, H.; Xia, Q.; Hu, Z.; Zhu, Y.; Yan, S.; Ge, C.; Zhang, Q.; Wang, X.; Shang, X. Nat. Mater. 2020, 20, 76. |
| [37] | Kim, H.; Choi, W.; Yoon, J.; Um, J. H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W.-S. Chem. Rev. 2020, 120, 6934. |
| [38] | Du, X. Y.; Wen, H.; Zhang, X. D.; Yue, Y. Z.; Hong, L.; Zhang, X. G.; Min, D. D.; Gea, X. X.; Yi, D. J. Mater. Chem. 2012, 22, 5960. |
| [39] | Wang, X. L.; Liu, J.; Hu, Y. F.; Ma, R. G.; Wang, J. C. Sci. China Mater. 2022, 65, 1421. |
| [40] | Jia, Y. G.; Chen, S. J.; Shao, X.; Cheng, J.; Lin, N.; Fang, D. L.; Mao, A. Q. Acta Chim. Sinica 2023, 81, 486 (in Chinese). |
| [40] | (贾洋刚, 陈诗洁, 邵霞, 程婕, 林娜, 方道来, 冒爱琴, 化学学报, 2023, 81, 486.) |
| [41] | Chen, H.; Qiu, N.; Wu, B. Z.; Yang, Z. M.; Sun, S.; Wang, Y. RSC Adv. 2020, 10, 9736. |
| [42] | Shen, L. F.; Lv, H. F.; Chen, S. Q.; Kopold, P.; Aken, P. A. v.; Wu, X. J.; Maier, J.; Yu, Y. Adv. Mater. 2017, 29, 1700142. |
| [43] | Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J.; Taberna, P.-L.; Tolbert, S. H.; Abru?a, H. D.; Simon, P.; Dunn, B. Nat. Mater. 2013, 12, 518. |
| [44] | Shi, A.; Chen, S.; Zheng, S.; Wang, Z. Acta Chim. Sinica 2021, 79, 1511 (in Chinese). |
| [44] | (史傲迪, 陈思, 郑淞生, 王兆林, 化学学报, 2021, 79, 1511.) |
| [45] | Lv, H. L.; Wang, X. J.; Yang, Y.; Liu, T.; Zhang, L. Y. Acta Phys. -Chim. Sin. 2023, 39, 10014 (in Chinese). |
| [45] | (吕浩亮, 王雪杰, 杨宇, 刘涛, 张留洋, 物理化学学报, 2023, 39, 10014.) |
/
| 〈 |
|
〉 |