研究论文

新型多孔三聚氰胺负载MnCe用于高选择性电催化CO2产甲酸

  • 雷雅茹 ,
  • 熊廷楷 ,
  • 于湘涛 ,
  • 黄秀兵 ,
  • 唐晓龙 ,
  • 易红宏 ,
  • 周远松 ,
  • 赵顺征 ,
  • 孙龙 ,
  • 高凤雨
展开
  • a 北京科技大学能源与环境工程学院 工业典型污染物资源化处理北京市重点实验室 北京 100083
    b 北京科技大学 钢铁共性技术协同创新中心 北京 100083
    c 北京科技大学材料科学与工程学院 北京 100083

收稿日期: 2023-12-11

  网络出版日期: 2024-03-07

Novel Porous Melamine Foam Loaded with MnCe for Highly Selective Electrocatalytic CO2 to Formic Acid

  • Yaru Lei ,
  • Tingkai Xiong ,
  • Xiangtao Yu ,
  • Xiubing Huang ,
  • Xiaolong Tang ,
  • Honghong Yi ,
  • Yuansong Zhou ,
  • Shunzheng Zhao ,
  • Long Sun ,
  • Fengyu Gao
Expand
  • a Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083
    b Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083
    c School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083

Received date: 2023-12-11

  Online published: 2024-03-07

摘要

本研究提出了一种尚未见报道的CO2还原电催化剂及其构造, 由MnCe作为活性位点, 三聚氰胺泡沫(MS)作为载体前驱体的新型电极材料——MnCe-CMS(碳化MS)和MnCe-GOMS(氧化石墨烯活化MS), 用于电催化CO2还原研究. 结果发现, MnCe-MS具有较宽的电位范围(–0.2~–3 V vs. RHE)及较好的产甲酸能力. 对比以常用的碳布(CC)为载体的MnCe-CC, MnCe-CMS和MnCe-GOMS的甲酸生成速率分别提高到2.3、2.8倍, 法拉第效率分别提高到2.3、2.5倍(MnCe-CC的最佳电位–0.4 V条件下), 并且MnCe-GOMS在–0.6 V表现出最佳甲酸法拉第效率(75.72%). 这归因于MS材料丰富的孔隙结构、较大的电化学表面积、易形成碳缺陷的特点, 分析表明GO的掺入可以进一步增大这些优势; 此外, 在Mn、Ce共同作用下, 有效促进电子传输、抑制析氢竞争反应、形成氧空位, 有利于CO2的吸附、活化与转化, 从而促进甲酸生成.

本文引用格式

雷雅茹 , 熊廷楷 , 于湘涛 , 黄秀兵 , 唐晓龙 , 易红宏 , 周远松 , 赵顺征 , 孙龙 , 高凤雨 . 新型多孔三聚氰胺负载MnCe用于高选择性电催化CO2产甲酸[J]. 化学学报, 2024 , 82(4) : 396 -408 . DOI: 10.6023/A23120529

Abstract

A previously unreported CO2 reduction electrocatalyst consisting of MnCe as the active site and melamine foam (MS) as the carrier precursor is proposed. The MS were prepared into carbonized melamine foam (CMS) and graphene oxide- activated melamine foam (GOMS) by activation, respectively. And Mn and Ce were impregnated on the above substrates to synthesize MnCe-CMS and MnCe-GOMS catalysts for the electrocatalytic CO2 reduction to formic acid. It was found that MnCe-MS (MnCe-CMS and MnCe-GOMS) had a wide potential range (–0.2~–3 V vs. RHE) and better formic acid production ability. Among them, the Faraday efficiency of formic acid (FEf) on MnCe-CMS was 63.04% at –0.4 V, and the yield rate of formic acid (Yf) was 470.89 μg•h–1•cm–2 at –3.0 V. MnCe-GOMS showed better electrocatalytic activity, with a FEf of 75.72% at –0.6 V (when the Yf=661.99 μg•h–1•cm–2), and optimal Yf of 746.9 μg•h–1•cm–2 at –0.8 V. In addition, no other products (e.g., acetic acid, methanol, ethanol, CO, methane) were detected during the reaction, suggesting that MnCe-MS has a good formic acid selectivity. Compared with the MnCe-CC, which are based on the commonly used carbon cloth (CC) as a carrier, the Yf of MnCe-CMS and MnCe-GOMS were increased to 2.3 and 2.8 times, and the FEf were increased to 2.3 and 2.5 times, respectively, at the optimal potential of MnCe-CC of –0.4 V. This is attributed to the rich pore structure and large electrochemical surface area of the MS material, which can easily form carbon defects during the preparation, thus favoring the adsorption of CO2. Moreover, under the joint action of Mn and Ce, it effectively promotes electron transport, inhibits the competition reaction of hydrogen precipitation, and forms oxygen vacancies, which is conducive to the adsorption, activation and conversion of CO2, thus promoting the formation of formic acid.

参考文献

[1]
(a) Lei, Y. R.; Wang, Z.; Bao, A.; Tang, X. L.; Huang, X. B.; Yi, H. H.; Zhao, S. Z.; Sun, T.; Wang, J. Y.; Gao, F. Y. Chem. Eng. J. 2022, 453, 139663.
[1]
(b) Jiang, Y.; Li, G.; Chen, Q.; Xu, Z.; Lin, S.; Guo, G. Acta Chim. Sinica 2022, 80, 703. (in Chinese)
[1]
(蒋银龙, 李国超, 陈青松, 徐忠宁, 林姗姗, 郭国聪, 化学学报, 2022, 80, 703).
[1]
(c) Guo, Q.; Fu, J. L.; Zhang, C. Y.; Cai, C. Y.; Wang, C.; Zhou, L. H.; Xu, R. B.; Wang, M. Y. J. Electrochem. 2021, 27, 449. (in Chinese)
[1]
(郭茜, 富佳龙, 张成燕, 蔡超越, 王城, 周丽华, 许瑞波, 王明艳, 电化学, 2021, 27, 449.)
[2]
(a) Yang, Y.; Zhang, H. Y.; Wang, Y.; Shao, L. H.; Fang, L.; Dong, H.; Lu, M.; Dong, L. Z.; Lan, Y. Q.; Zhang, F. M. Adv. Mater. 2023, 35, 2304170.
[2]
(b) Lan, B. Y.; Shi, H. F. Acta Phys. Chim. Sinica 2014, 30, 2177. (in Chinese)
[2]
(蓝奔月, 史海峰, 物理化学学报, 2014, 30, 2177).
[3]
(a) Jiang, Q. Chin. J. Appl. Chem. 2001, 18, 536. (in Chinese)
[3]
(江琦, 应用化学, 2001, 18, 536.)
[3]
(b) Song, Z. J.; Liu, J.; Bai, Y.; Li, J. Y.; Peng, J. J. Chin. J. Org. Chem. 2023, 43, 2068. (in Chinese)
[3]
(宋姿洁, 刘俊, 白赢, 厉嘉云, 彭家建, 有机化学, 2023, 43, 2068).
[3]
(c) Cui, G. Q.; Hu, Y. Y.; Lou, Y. J.; Zhou, M. X.; Li, Y. M.; Wang, Y. J.; Jiang, G. Y.; Xu, C. M. Acta Chim. Sinica 2023, 81, 1081. (in Chinese)
[3]
(崔国庆, 胡溢玚, 娄颖洁, 周明霞, 李宇明, 王雅君, 姜桂元, 徐春明, 化学学报, 2023, 81, 1081).
[3]
(d) Liu, C. H.; Guo, X. M.; Zhong, C. L.; Li, L.; Hua, Y. X.; Mao, D. S.; Lu, G. Z. Chin. J. Inorg. Chem. 2016, 32, 1405. (in Chinese)
[3]
(刘超恒, 郭晓明, 钟成林, 李亮, 华玉喜, 毛东森, 卢冠忠, 无机化学学报, 2016, 32, 1405.)
[4]
Zhang, J. F.; Wang, L.; Sun, Y. 2016, 79, 958. (in Chinese)
[4]
(张佳凤, 王黎, 孙杨, 化学通报, 2016, 79, 958.)
[5]
(a) Zhang, W.; Yi, H.; Ma, L.; Zhu, G.; Zhong, J. Adv. Sci. 2017, 5, 1700275.
[5]
(b) Cheng, Y.; Yang, S. Z.; Jiang, S. P.; Wang, S. Y. Small Methods 2019, 3, 1800440.
[6]
Mori, K.; Futamura, Y.; Masuda, S.; Kobayashi, H.; Yamashita, H. Nat. Commun. 2019, 10, 4094.
[7]
Li, F. J., Electrochim. Acta 2020, 332, 135457.
[8]
Hussain, N.; Abdelkareem, M. A.; Alawadhi, H.; Elsaid, K.; Olabi, A. Chem. Eng. Sci. 2022, 258, 117757.
[9]
Kortlever, R.; Peters, I.; Koper, S.; Koper, M. T. ACS Catal. 2015, 5, 3916.
[10]
(a) Zhai, J. R.; Kang, Q. L.; Liu, Q. Y.; Lai, D. W.; Lu, Q. Y.; Gao, F. J. Colloid Interface Sci. 2022, 608, 1942.
[10]
(b) Zhang, T.; Verma, S.; Kim, S.; Fister, T. T.; Kenis, P. J.; Gewirth, A. A. J. Electroanal. Chem. 2020, 875, 113862.
[10]
(c) Zhang, A.; Liang, Y. X.; Li, H. P.; Zhao, X. Y.; Chen, Y. L.; Zhang, B. Y.; Zhu, W. G.; Zeng, J. Nano Lett. 2019, 19, 6547.
[10]
(d) Feng, J.; Gao, H.; Zheng, L.; Chen, Z.; Zhang, X. Nat. Commun. 2020, 11, 1.
[10]
(e) Su, X. Z.; Jiang, Z. L.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X. Nat. Commun. 2022, 13, 1.
[10]
(f) Lee, S.; Kim, M.; Lee, K. T.; Irvine, J. T.; Shin, T. H. Adv. Energy Mater. 2021, 11, 2100339.
[10]
(g) Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. ACS Catal. 2015, 5, 6302.
[10]
(h) Li, Y.; Adli, N. M.; Shan, W.; Wang, M.; Zachman, M. J.; Hwang, S.; Tabassum, H.; Karakalos, S.; Feng, Z.; Wang, G. Energy Environ. Sci. 2022, 15, 2108.
[10]
(i) Chu, S.; Li, X.; Robertson, A. W.; Sun, Z. Acta Phys. Chim. Sinica 2021, 37, 5.
[11]
Li, X.; Qian, N. K.; Ji, L.; Wu, X. Q.; Li, J. J.; Huang, J. B.; Yan, Y. C.; Yang, D. R.; Zhang, H. Nanoscale Adv. 2022, 4, 2288.
[12]
Ren, X. X.; Gao, Y. G.; Zheng, L. R.; Wang, Z. Y.; Wang, P.; Zheng, Z. K.; Liu, Y. Y.; Cheng, H. F.; Dai, Y.; Huang, B. B. Surf. Interfaces 2021, 23, 100923.
[13]
Huang, C.; Liu, J. H.; Huang, H. H.; Xu, X. F.; Ke, Z. F. Chin. Chem. Lett. 2022, 33, 262.
[14]
(a) Yan, X. C.; Dong, H.; Tong, H.; Wang, Y.; Shao, L. H.; Du, Y. J.; Ge, J. T.; Fang, W. B.; Zhang, F. M. Appl. Surf. Sci. 2023, 157828.
[14]
(b) Chen, Q.; Kuang, Q.; Xie, Z. X. Acta Chim. Sinica 2021, 79, 10. (in Chinese)
[14]
(陈钱, 匡勤, 谢兆雄, 化学学报, 2021, 79, 10.)
[15]
(a) Lei, F.; Liu, W.; Sun, Y.; Xu, J.; Liu, K.; Liang, L.; Yao, T.; Pan, B.; Wei, S.; Xie, Y. Nat. Commun. 2016, 7, 12697.
[15]
(b) Li, H.; Oloman, C. J. Appl. Electrochem. 2006, 36, 1105.
[15]
(c) Zhao, Y.; Miao, Z.; Wang, F.; Liang, M.; Liu, Y.; Wu, M.; Diao, L.; Mu, J.; Cheng, Y.; Zhou, J. J. Environ. 2021, 9, 105515.
[16]
Ma, L. B.; Hu, Y.; Chen, R. P.; Zhu, G. Y.; Chen, T.; Lv, H. L.; Wang, Y. R.; Liang, J.; Liu, H. X.; Yan, C. Z. Nano Energy 2016, 24, 139.
[17]
(a) Wang, R. F.; Liu, Y. C.; Kong, Y. F.; Xie, P.; Zhao, S. L. Chem. Eng. J. 2023, 144049.
[17]
(b) Ning, S. L.; Wang, J. G.; Xiang, D.; Huang, S. B.; Chen, W.; Chen, S. W.; Kang, X. W. J. Catal. 2021, 399, 67.
[18]
Wang, C. Z.; Tang, X. L.; Yi, H. H.; Gao, F. Y.; Ni, S. Q.; Zhang, R. C.; Shi, Y. R. Colloids Surf., A 2021, 612, 126007.
[19]
Liang, Z. J.; Fadhel, B.; Schneider, C. J.; Chaffee, A. L. Adsorption 2009, 15, 429.
[20]
Lee, J. S.; Park, G. S.; Kim, S. T.; Liu, M.; Cho, J. Angew. Chem., Int. Ed. 2013, 52, 3, 1026.
[21]
Li, W.; Chen, J. W.; Xiao, Z. L.; Xing, J. B.; Yang, C.; Qi, X. P. Carbon 2021, 174, 758.
[22]
Wu, Y. L.; Yan, H.; Dai, Y.; Zhang, B. H. J. Shanghai Univ.,Nat. Sci. Ed. 2023, 29, 2. (in Chinese)
[22]
(吴艳玲, 鄢浩, 戴扬, 张宝华, 上海大学学报(自然科学版), 2023, 29, 2).
[23]
Wang, C. Z.; Gao, F. Y.; Yu, Q. J.; Yi, H. H.; Ni, S. Q.; Tang, X. L. Mater. Rep. 2021, 35, 21079. (in Chinese)
[23]
(王成志, 高凤雨, 于庆君, 易红宏, 倪书权, 唐晓龙, 材料导报, 2021, 35, 21079.)
[24]
Long, C.; Li, X.; Guo, J.; Shi, Y. A.; Liu, S. Q.; Tang, Z. Y. Small Methods 2018, 3, 1800369.
[25]
Albero, J.; Peng, Y.; García, H. ACS Catal. 2020, 10, 5734.
[26]
Duan, J. Y.; Liu, T. Y.; Zhao, Y. H.; Yang, R. O.; Zhao, Y.; Wang, W. B.; Liu, Y. W.; Li, H. Q.; Li, Y. F.; Zhai, T. Y. Nat. Commun. 2022, 13, 2039.
[27]
Lu, X.; Li, Z. Y.; Liu, Y. A.; Tang, B.; Zhu, Y. C.; Razal, J. M.; Pakdel, E.; Wang, J. F.; Wang, X. G. J. Cleaner Prod. 2020, 246, 118949.
[28]
(a) Li, Y.; Li, S.; Zhang, T.; Shi, L. L.; Liu, S. T.; Zhao, Y. J. Alloys Compd. 2019, 792, 424.
[28]
(b) Zhu, H. G.; Chen, D. Y.; An, W.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Small 2015, 11, 5222.
[29]
Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. J. Electron. Spectrosc. Relat. Phenom. 2014, 195, 145.
[30]
Venkataswamy, P.; Jampaiah, D.; Lin, F.; Alxneit, I.; Reddy, B. M. Appl. Surf. Sci. 2015, 349, 299.
[31]
(a) Wang, G. D.; Xiang, W. J.; Liu, H. Z.; Yin, Y. Z.; Ma, D. D.; Ma, J. F. ACS Appl. Energy Mater. 2023, 6, 10155.
[31]
(b) Zhang, M. X.; Peng, H.; Sun, K. J.; Xie, X.; Lei, X. F.; Liu, S. T.; Ma, G. F.; Lei, Z. Q. Chin. J. Chem. 2022, 40, 2763.
[32]
Wang, Y. H.; Yao, C. Y.; Cao, Y. J.; Zhang, C.; Tang, W. X. Ceram. Int. 2023, 49, 1137.
[33]
Zhang, P.; Wang, R. T.; He, M.; Lang, J. W.; Xu, S.; Yan, X. B. Adv. Funct. Mater. 2016, 26, 1354.
[34]
(a) Gan, G. Q.; Fan, S. Y.; Li, X. Y.; Wang, J.; Bai, C. P.; Guo, X. C.; Tade, M.; Liu, S. M. ACS Catal. 2021, 11, 14284.
[34]
(b) Adamu, H.; Dubey, P.; Anderson, J. A. Chem. Eng. J. 2016, 284, 380.
[35]
(a) Zhang, L. H.; Shi, Y. M.; Wang, Y.; Shiju, N. R. Adv. Sci. 2020, 7, 1902126.
[35]
(b) Ortiz-Medina, J.; Wang, Z. P.; Cruz-Silva, R.; Morelos-Gomez, A.; Wang, F.; Yao, X. D.; Terrones, M.; Endo, M. Adv. Mater. 2019, 31, 1805717.
[35]
(c) Tang, C.; Zhang, Q. Adv. Mater. 2017, 29, 1604103.
[36]
(a) Zhu, J. W.; Huang, Y. P.; Mei, W. C.; Zhao, C. Y.; Zhang, C. T.; Zhang, J.; Amiinu, I. S.; Mu, S. C. Angew. Chem., Int. Ed. 2019, 58, 3859.
[36]
(b) Wang, W.; Shang, L.; Chang, G. J.; Yan, C. Y.; Shi, R.; Zhao, Y. X.; Waterhouse, G. I.; Yang, D. J.; Zhang, T. R. Adv. Mater. 2019, 31, 1808276.
[37]
Nethravathi, C.; Rajamathi, M. Carbon 2008, 46, 1994.
[38]
Xu, J.; Roghabadi, F. A.; Luo, Y.; Ahmadi, V.; Wang, Q.; Wang, Z.; He, H. J. Environ. Sci. 2023, 140, 165.
[39]
Jia, Y. F.; Li, F.; Fan, K.; Sun, L. C. Adv. Powder Mater. 2021, 1, 1.
[40]
Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; G?ttle, A. J.; Calle-Vallejo, F.; Koper, M. T. Nat. Energy 2019, 4, 732.
[41]
Mino, L.; Spoto, G.; Ferrari, A. M. J. Phys. Chem. C. 2014, 118, 25016.
[42]
Tang, X. L.; Wang, C. Z.; Gao, F. Y.; Ma, Y. L.; Yi, H. H.; Zhao, S. Z.; Zhou, Y. S. J. Environ. Chem. Eng. 2020, 8, 104399.
[43]
(a) Shen, B. X.; Zhu, S. W.; Zhang, X.; Chi, G. L.; Patel, D.; Si, M.; Wu, C. F. Fuel 2018, 224, 241.
[43]
(b) Larrubia, M. A.; Ramis, G.; Busca, G. Appl. Catal., B 2000, 27, L145.
[43]
(c) Zawadzki, J.; Wi?niewski, M. Carbon 2003, 41, 2257.
[44]
Wang, F.; Xie, Z. B.; Liang, J. S.; Fang, B. Z.; Piao, Y. A.; Hao, M.; Wang, Z. S. Environ. Sci. Technol. 2019, 53, 6989.
[45]
Wang, C. Z.; Gao, F. Y.; Ko, S. J.; Liu, H. H.; Yi, H. H.; Tang, X. L. Chem. Eng. J. 2022, 434, 134729.
[46]
Ho, C.; Yu, J. C.; Kwong, T.; Mak, A. C.; Lai, S. Chem. Mater. 2005, 17, 4514.
[47]
Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Adv. Mater. 2016, 28, 3423.
[48]
(a) Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Chem. Rev. 2016, 116, 5987.
[48]
(b) Kumari, N.; Haider, M. A.; Agarwal, M.; Sinha, N.; Basu, S. J. Phys. Chem. C 2016, 120, 16626.
[49]
Wang, Y. F.; Chen, Z.; Han, P.; Du, Y. H.; Gu, Z. X.; Xu, X.; Zheng, G. F. ACS Catal. 2018, 8, 7113.
[50]
Creamer, A. E.; Gao, B.; Zhang, M. Chem. Eng. J. 2014, 249, 174.
[51]
(a) Geng, Z. G.; Kong, X. D.; Chen, W. W.; Su, H. Y.; Liu, Y.; Cai, F.; Wang, G. X.; Zeng, J. Angew. Chem., Int. Ed. 2018, 57, 6054;
[51]
(b) Liu, L. J.; Jiang, Y. Q.; Zhao, H. L.; Chen, J. T.; Cheng, J. L.; Yang, K. S.; Li, Y. ACS Catal. 2016, 6, 1097.
[52]
Sheng, S.; Ye, K.; Gao, Y. Y.; Zhu, K.; Yan, J.; Wang, G. L.; Cao, D. X. J. Colloid Interface Sci. 2021, 602, 325.
[53]
(a) Yang, X. X.; Chen, X.; Cao, H. L.; Li, C.; Wang, L. L.; Wu, Y. L.; Wang, C. Z.; Li, Y. J. Power Sources 2020, 480, 228741.
[53]
(b) Li, Z. Y.; Yang, Y. S.; Ding, H.; Li, Z.; Wang, L.; Zhang, X.; Li, J.; Xie, W. F.; Hu, X. Y.; Wang, B. Chem Catal. 2023, 3, 10.
[54]
Zheng, W.; Nayak, S.; Yuan, W.; Zeng, Z.; Hong, X.; Vincent, K. A.; Tsang, S. C. E. Chem. Commun. 2016, 52, 13901.
[55]
Wang, J.; Zheng, M. Y.; Zhao, X.; Fan, W. L. ACS Catal. 2022, 12, 5441.
[56]
(a) Wang, C.; Zhu, C.; Zhang, M.; Geng, Y.; Su, Z. Adv. Theory Simul. 2020, 3, 2000218.
[56]
(b) Peng, L. W.; Zhang, Y.; He, R. N.; Xu, N. N.; Qiao, J. L. Acta Phys. Chim. Sinica 2023, 39, 2302037.
[57]
Hummers Jr, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
文章导航

/