研究论文

氧空位控制BiVO4晶面异质结的磁性和光电催化性能

  • 王国景 ,
  • 陈永辉 ,
  • 张秀芹 ,
  • 张俊笙 ,
  • 徐俊敏 ,
  • 王静
展开
  • a 兰州大学材料与能源学院 兰州 730000
    b 中国矿业大学材料与物理学院 徐州 221116
    c 郑州大学物理学院 教育部集成电路设计与应用国际合作联合实验室 郑州 450001

收稿日期: 2023-12-13

  网络出版日期: 2024-03-07

基金资助

国家自然科学基金(62304094); 甘肃省自然科学基金(22JR5RA484); 中央高校基本科研业务费专项资金(lzujbky-2023-45); 教育部先进材料重点实验室开放课题(AdvMat-2023-2); 河南省高等学校重点科研项目(24A430039); 河南省自然科学基金(242300420310)

Magnetic and Photoelectrocatalytic Properties of BiVO4 Surface Heterojunctions Controlled by Oxygen Vacancies

  • Guojing Wang ,
  • Yonghui Chen ,
  • Xiuqin Zhang ,
  • Junsheng Zhang ,
  • Junmin Xu ,
  • Jing Wang
Expand
  • a School of Material & Energy, Lanzhou University, Lanzhou 730000
    b School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116
    c International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001

Received date: 2023-12-13

  Online published: 2024-03-07

Supported by

National Natural Science Foundation of China(62304094); Natural Science Foundation of Gansu Province in China(22JR5RA484); Fundamental Research Funds for the Central Universities of Ministry of Education of China(lzujbky-2023-45); Fund of Key Laboratory of Advanced Materials of Ministry of Education(AdvMat-2023-2); Key Research Projects of Higher Education Institutions in Henan Province(24A430039); Natural Science Foundation of Henan Province(242300420310)

摘要

在铁磁光催化剂中, 大多数光生电荷具有相同的自旋状态, 因此可以有效抑制光生电子和空穴的复合. 利用BiVO4 {010}和{110}晶面中氧空位的形成能不同, 通过晶面取向和氧空位的协同作用来调控BiVO4的铁磁性能. 在N2气氛中退火后, BiVO4晶面异质结中氧空位的比例随着{010}/{110}晶面比例的增加而降低, 因为{010}晶面上氧空位的形成能低于{110}晶面. {010}/{110}晶面比例较低的BiVO4晶面异质结的铁磁性能优于{010}/{110}晶面比例较高的BiVO4, 因为前者颗粒尺寸更小、更立体, 其比表面积和界面区域更大, 所以其表面未饱和自旋对总磁矩的贡献更大. {010}/{110}比例较高的BiVO4晶面异质结具有更大的光电流密度和光电催化产氢效率, 源于BiVO4{010}晶面比{110}晶面具有更高的电荷迁移率、更好的吸附特性和更低的能垒. 并且氧空位的引入也提高了BiVO4的制氢效率.

本文引用格式

王国景 , 陈永辉 , 张秀芹 , 张俊笙 , 徐俊敏 , 王静 . 氧空位控制BiVO4晶面异质结的磁性和光电催化性能[J]. 化学学报, 2024 , 82(4) : 409 -415 . DOI: 10.6023/A23120532

Abstract

In ferromagnetic photocatalysts, most charges have the same spin state, which suppresses photogenerated electron-hole recombination. However, ferromagnetic photocatalysts are rare, and the impact of spin is negligible in nonferromagnetic photocatalysts. In this study, the ferromagnetic properties of BiVO4 are regulated in terms of crystal plane orientation and oxygen vacancy synergism, considering the different formation energies of oxygen vacancies in its {010} and {110} planes. BiVO4 powders with tunable crystal facets are synthesized by using a solvothermal method. The synthesized BiVO4 surface heterojunctions with {010}/{110} crystal plane ratios of 0.17 and 0.93 are referred to as BiVO4-pH=0.5 and BiVO4-pH=1, respectively. The density of oxygen vacancies in BiVO4 is regulated by annealing at 450 ℃ for 2 h in a N2 atmosphere inside a tube furnace. The annealed BiVO4 surface heterojunctions are called BiVO4-pH=0.5-N2 and BiVO4- pH=1-N2. X-ray photoelectron spectroscopy is performed to examine the ratios of the number of surface oxygen vacancies to the number of surface oxygen atoms at the intrinsic sites (OV/OL). The ratios for BiVO4-pH=1, BiVO4-pH=1-N2, BiVO4-pH=0.5, and BiVO4-pH=0.5-N2 are 18.96%, 20.36%, 16.04%, and 21.42%, respectively. Thermogravimetric analysis is performed to determine the concentration of oxygen vacancies because the oxygen vacancies are refilled with oxygen atoms at high temperatures resulting in weight gain. The OV/OL ratios for the entire material are 0.56% and 0.23% for BiVO4-pH=0.5-N2 and BiVO4-pH=1-N2, respectively. The proportion of oxygen vacancies in the BiVO4 surface heterojunctions decreases with increasing {010}/{110} ratio after annealing in the N2 atmosphere. This is because the formation energy of oxygen vacancies in the {010} plane is lower than that in the {110} plane. The ferromagnetic properties of the BiVO4 surface heterojunctions are correlated to the concentration of oxygen vacancies and the ratio of the {010}/{110} crystal planes. The ferromagnetic properties of BiVO4 with a lower {010}/{110} ratio (BiVO4-pH=0.5) are superior to those of BiVO4 with a higher {010}/{110} ratio (BiVO4-pH=1). BiVO4-pH=0.5 has a smaller particle size and is more three-dimensional, indicating a larger specific surface area and interfacial region. The contribution of the surface unsaturated spin to the total magnetic moment in BiVO4-pH=0.5 is higher than that in BiVO4-pH=1. The introduced oxygen vacancies enhance the ferromagnetic properties of BiVO4-pH=0.5 as well as the photoelectrocatalytic H2 production properties of the BiVO4 surface heterojunctions (BiVO4-pH=0.5 and BiVO4-pH=1). The formal quantum efficiency (FQE) used in this study is synonymous with the photonic efficiency calculated from the known spectral distribution of the excitation source and known absorption spectrum of the reaction system. The FQE values of BiVO4-pH=1, BiVO4-pH=1-N2, BiVO4-pH=0.5, and BiVO4-pH=0.5-N2 are 0.0086%, 0.045%, 0.0019%, and 0.032%, respectively. The enhanced photoelectrocatalytic performance can be attributed to the significantly increased visible light absorption capacity, rapid transport of electrons and holes, high photogenerated electron-hole separation efficiency, and improved reduction potential. In particular, BiVO4 with a higher {010}/ {110} ratio exhibits a higher photocurrent density and a greater H2 production efficiency because the {010} facets have higher charge mobility, better water adsorption characteristics, and lower energy barrier compared to the {110} facets.

参考文献

[1]
AlSalka, Y.; Granone, L. I.; Ramadan, W.; Hakki, A.; Dillert, R.; Bahnemann, D. W. Appl. Catal., B 2019, 244, 1065.
[2]
Chehade, G.; Dincer, I. Fuel 2021, 299, 120845.
[3]
Sivagurunathan, P.; Sivagurunathan, P.; Kadier, A.; Mudhoo, A.; Kumar, G.; Chandrasekhar, K.; Kobayashi, T.; Xu, K. In Nanomaterials: Biomedical, Environmental, and Engineering Applications, Eds.: Kanchi, S.; Ahmed, S.; Sabela, M. I.; Hussain, C. M., Scrivener Publishing LLC, Beverly, 2018, pp. 217-238.
[4]
McKone, J. R.; Lewis, N. S.; Gray, H. B. Chem. Mater. 2014, 26, 407.
[5]
Lewis, N. S. Chem. Rev. 2015, 115, 12631.
[6]
Chu, S.; Li, W.; Yan, Y.; Hamann, T.; Shih, I.; Wang, D.; Mi, Z. Nano Futures 2017, 1, 022001.
[7]
Zhu, S.; Wang, D. Adv. Energy Mater. 2017, 7, 1700841.
[8]
Walter, M. G.; Warren, E. L.; Mckone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446.
[9]
Kim, T. W.; Ping, Y.; Galli, G. A.; Choi, K. S. Nat. Commun. 2015, 6, 8769.
[10]
Wang, W.; Strohbeen, P. J.; Lee, D.; Zhou, C.; Kawasaki, J. K.; Choi, K. S.; Liu, M.; Galli, G. Chem. Mater. 2020, 32, 2899.
[11]
Guo, M.; Wang, Y.; He, Q.; Wang, W.; Wang, W.; Fu, Z.; Wang, H. RSC Adv. 2015, 5, 58633.
[12]
Lv, D.; Zhang, D.; Pu, X.; Kong, D.; Lu, Z.; Shao, X.; Ma, H.; Dou, J. Sep. Purif. Technol. 2017, 174, 97.
[13]
Hu, Y.; Fan, J.; Pu, C.; Li, H.; Liu, E.; Hu, X. J. Photochem. Photobiol., A 2017, 337, 172.
[14]
Malathi, A.; Madhavan, J.; Ashokkumar, M.; Arunachalam, P. Appl. Catal., A 2018, 555, 47.
[15]
Li, J. Guangzhou Chem. Ind. 2018, 46, 20 (in Chinese)
[15]
(李杰, 广州化工, 2018, 46, 20.)
[16]
Chen, Z. Y.; Sun, J.; Luo, X. W.; Li, X. Y.; Shen, M. X.; Huang, Z. J. Environ. Chem. 2020, 39, 2129 (in Chinese)
[16]
(陈紫盈, 孙洁, 罗雪文, 李秀莹, 沈敏贤, 黄柱坚, 环境化学, 2020, 39, 2129.)
[17]
Li, J.; Pang, X. J.; Wu, Y. F. New Chem. Mater. 2020, 48, 19 (in Chinese)
[17]
(李杰, 逄显娟, 吴艳芳, 化工新型材料, 2020, 48, 19.)
[18]
Xiao, L. G.; Wang, Y. M. Mod. Chem. Ind. 2023, 43, 41 (in Chinese)
[18]
(肖力光, 王一鸣, 现代化工, 2023, 43, 41.)
[19]
Rao, P. M.; Cai, L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J. M.; Yang, P.; Zheng, X. Nano Lett. 2014, 14, 1099.
[20]
Wang, S. C.; Chen, P.; Yun, J. H.; Hu, Y. X.; Wang, L. Z. Angew. Chem., Int. Ed. 2017, 56, 8500.
[21]
Pan, Q. G.; Yang, K. R.; Wang, G. L.; Li, D. D.; Sun, J.; Yang, B.; Zou, Z. Q.; Hu, W. B.; Wen, K.; Yang, H. Chem. Eng. J. 2019, 372, 399.
[22]
Regmi, C.; Kshetri, Y. K.; Pandey, R. P.; Kim, T. H.; Gyawali, G.; Lee, S. W. J. Environ. Sci. 2019, 75, 84.
[23]
Qin, Q.; Cai, Q.; Li, J.; Jian, C.; Hong, W.; Liu, W. Solar RRL 2019, 3, 1900301.
[24]
Zhang, Y.; Chen, X.; Jiang, F.; Bu, Y.; Ao, J. P. ACS Sustainable Chem. Eng. 2020, 8, 9184.
[25]
Chen, S.; Huang, D.; Xu, P.; Xue, W.; Lei, L.; Chen, Y.; Zhou, C.; Deng, R.; Wang, W. Chem. Eng. J. 2021, 420, 127573.
[26]
Xu, H.; Fan, W.; Zhao, Y.; Chen, B.; Gao, Y.; Chen, X.; Xu, D.; Shi, W. Chem. Eng. J. 2021, 411, 128480.
[27]
Li, C.; Feng, F.; Jian, J.; Xu, Y.; Li, F.; Wang, H.; Jia, L. J. Mater. Sci. Technol. 2021, 79, 21.
[28]
Yan, J. C.; Shi, Q.; Li, H. S.; Dai, S. H.; Gan, L. M.; Dong, H. Y.; Zhu, Q. Y.; Liu, S. G.; Tan, X. C.; Gao, J. Acta Sci. Circumst. 2021, 41, 2120 (in Chinese)
[28]
(闫敬超, 施钦, 李欢松, 戴世华, 甘林萌, 董慧峪, 朱倩颖, 刘绍刚, 谭学才, 高健, 环境科学学报, 2021, 41, 2120.)
[29]
Liu, Y. F.; Yang, Y. R.; Sun, Z. X.; Liu, C.; Qiu, M.; Gao, F. J. South China Normal Univ. (Nat. Sci. Ed.) 2022, 54, 22 (in Chinese)
[29]
(刘宇飞, 杨玉蓉, 孙政新, 刘畅, 邱敏, 高帆, 华南师范大学学报(自然科学版), 2022, 54, 22.)
[30]
Pan, S. Y.; Zhao, C.; Li, M.; Hu, X. D. Ind. Water Treat. 2023, 43, 146 (in Chinese)
[30]
(潘淑颖, 赵超, 李曼, 胡雪荻, 工业水处理, 2023, 43, 146.)
[31]
Yue, X. Y.; Cheng, L.; Fan, J. J.; Xiang, Q. J. Appl. Catal., B 2022, 304, 120979.
[32]
Wang, S. C.; He, T. W.; Chen, P.; Du, A. J.; Ostrikov, K. K.; Huang, W.; Wang, L. Z. Adv. Mater. 2020, 32, 2001385.
[33]
Zhao, D.; Zong, W.; Fan, Z.; Fang, Y. W.; Xiong, S.; Du, M.; Wu, T.; Ji, F.; Xu, X. J. Nanopart. Res. 2017, 19, 124.
[34]
Wang, S.; Chen, P.; Bai, Y.; Yun, J. H.; Liu, G.; Wang, L. Adv. Mater. 2018, 30, e1800486.
[35]
Wu, J. M.; Chen, Y.; Pan, L.; Wang, P.; Cui, Y.; Kong, D.; Wang, L.; Zhang, X.; Zou, J. J. Appl. Catal., B 2018, 221, 187.
[36]
Shi, C.; Dong, X.; Wang, X.; Ma, H.; Zhang, X. Chin. J. Catal. 2018, 39, 128.
[37]
Li, G. L. RSC Adv. 2017, 7, 9130.
[38]
Wang, G.; Xiong, S.; Chen, Y.; Wang, C.; Lv, S.; Jia, K.; Xiang, Y.; Liu, J.; Liu, C.; Li, Z. J. Mater. Sci. Technol. 2023, 160, 240.
[39]
Gao, W.; Peng, R.; Yang, Y.; Zhao, X.; Cui, C.; Su, X.; Qin, W.; Dai, Y.; Ma, Y.; Liu, H.; Sang, Y. ACS Energy Lett. 2021, 6, 2129.
[40]
Mtangi, W.; Tassinari, F.; Vankayala, K.; Vargas Jentzsch, A.; Adelizzi, B.; Palmans, A. R.; Fontanesi, C.; Meijer, E. W.; Naaman, R. J. Am. Chem. Soc. 2017, 139, 2794.
[41]
Javed, H.; Rehman, A.; Mussadiq, S.; Shahid, M.; Khan, M. A.; Shakir, I.; Agboola, P. O.; Aboud, M. F. A.; Warsi, M. F. Synth. Met. 2019, 254, 1.
[42]
Garcés-Pineda, F. A.; Blasco-Ahicart, M.; Nieto-Castro, D.; López, N.; Galán-Mascarós, J. R. Nat. Energy 2019, 4, 519.
[43]
Yu, C. L.; Wen, H. R.; Xiang, B.; Zhang, C. X. J. Jiangxi Univ. Sci. Technol. 2009, 30, 9 (in Chinese)
[43]
(余长林, 温和瑞, 相彬, 张彩霞, 江西理工大学学报, 2009, 30, 9.)
[44]
Wang, J. L.; Liao, R.; Li, Y. L.; Pan, X. Q.; Huang, H. Y.; Guo, B. G.; Liu, H. F.; Xie, R. S. J. Sichuan Univ. (Nat. Sci. Ed.) 2020, 57, 341 (in Chinese)
[44]
(王捷琳, 廖蕊, 李园利, 潘小琴, 黄鹤燕, 郭宝刚, 刘海峰, 谢瑞士, 四川大学学报(自然科学版), 2020, 57, 341.)
[45]
Zhao, Y.; Ding, C.; Zhu, J.; Qin, W.; Tao, X.; Fan, F.; Li, R.; Li, C. Angew. Chem., Int. Ed. 2020, 59, 9653.
[46]
Tan, H.; Zhao, Z.; Zhu, W. B.; Coker, E. N.; Li, B.; Zheng, M.; Yu, W.; Fan, H.; Sun, Z. ACS Appl. Mater. Interfaces 2014, 6, 19184.
[47]
Li, Z. P.; Dai, J. F.; Cheng, C.; Feng, W. Mater. Rev. 2022, 36, 20120114 (in Chinese)
[47]
(李增鹏, 戴剑锋, 成晨, 冯伟, 材料导报, 2022, 36, 20120114.)
[48]
Braslavsky, S. E.; Braun, A. M.; Cassano, A. E.; Emeline, A. V.; Litter, M. I.; Palmisano, L.; Parmon, V. N.; Serpone, N. Pure Appl. Chem. 2011, 83, 931.
[49]
Chen, X. J.; Shi, R.; Chen, Q.; Zhang, Z. J.; Jiang, W. J.; Zhu, Y. F.; Zhang, T. R. Nano Energy 2019, 59, 644.
[50]
Yang, J.; Wang, D.; Zhou, X.; Li, C. Chem.-Eur. J. 2013, 19, 1320.
[51]
Tan, H. L.; Wen, X.; Amal, R.; Ng, Y. H. J. Phys. Chem. Lett. 2016, 7, 1400.
[52]
Zhao, G. S.; Li, Y. X.; Niu, S. Y.; Liu, W.; Chang, L. M. Bull. Chin. Ceram. Soc. 2014, 33, 2011 (in Chinese)
[52]
(赵国升, 李玉鑫, 牛思宇, 刘伟, 常立民, 硅酸盐通报, 2014, 33, 2011.)
[53]
Liu, W.; Zhao, G. S.; Chang, L. M.; An, M. Z. Bull. Chin. Ceram. Soc. 2016, 35, 2841 (in Chinese)
[53]
(刘伟, 赵国升, 常立民, 安茂忠, 硅酸盐通报, 2016, 35, 2841.)
[54]
Yue, X. Y.; Cheng, L.; Li, F.; Fan, J. J.; Xiang, Q. J. Angew. Chem., Int. Ed. 2022, 61, e202208414.
文章导航

/