研究论文

(1-x)NaNbO3-x(0.3Bi0.5Na0.5TiO3-0.7BiFeO3)陶瓷的介电以及储能性能研究

  • 郭云凤 ,
  • 王俊贤 ,
  • 王泽星 ,
  • 李家茂 ,
  • 刘畅
展开
  • 安徽工业大学 材料科学与工程学院先进陶瓷研究中心 马鞍山 243032

收稿日期: 2024-01-23

  网络出版日期: 2024-04-10

基金资助

项目受安徽高校自然科学研究项目(KJ2019A0054)

Dielectric and Energy Storage Properties of (1-x)NaNbO3-x(0.3Bi0.5Na0.5TiO3-0.7BiFeO3) Ceramics

  • Yunfeng Guo ,
  • Junxian Wang ,
  • Zexing Wang ,
  • Jiamao Li ,
  • Chang Liu
Expand
  • Advanced Ceramics Research Center, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan 243032

Received date: 2024-01-23

  Online published: 2024-04-10

Supported by

Natural Science Research Project of Anhui Educational Committee(KJ2019A0054)

摘要

采用常规固相法制备(1-x)NaNbO3-x(0.3Bi0.5Na0.5TiO3-0.7BiFeO3) [NN-x(BNT-BF)] (x=0.05, 0.1, 0.15, 0.2)陶瓷, 并对其物相组成、微观形貌、介电与储能特性进行系统研究. 结果表明, 随着BNT-BF含量的增加, NN-x(BNT-BF)陶瓷逐渐由正交反铁电P相和R相共存(x<0.1)转变为单一反铁电R相(x≥0.1), 弛豫行为增强. BNT-BF掺杂显著改善了陶瓷的致密度, 且陶瓷的平均晶粒尺寸随着掺杂量增大先减小后增大. 同时取代NaNbO3的A位和B位可破坏NN原有的铁电长程有序结构, 优化陶瓷的储能性能. 在410 kV/cm的击穿场强(Eb)下, NN-0.2(BNT-BF)陶瓷的有效储能密度(Wrec)和储能效率(η)分别为2.54 J/cm3和89.24%, 且在20~120 ℃的温度范围内具有高的温度稳定性. 同时, 高功率密度(PD=49 MW/cm3)、大电流密度(CD=406 A/cm2)和超快放电速度(t0.9=35 ns)使得NN-0.2(BNT-BF)陶瓷在脉冲功率系统中具有潜在的应用前景.

本文引用格式

郭云凤 , 王俊贤 , 王泽星 , 李家茂 , 刘畅 . (1-x)NaNbO3-x(0.3Bi0.5Na0.5TiO3-0.7BiFeO3)陶瓷的介电以及储能性能研究[J]. 化学学报, 2024 , 82(5) : 511 -519 . DOI: 10.6023/A24010028

Abstract

Sodium niobate (NaNbO3) ceramic, as a representative of antiferroelectric materials, has been widely studied in the field of energy storage due to its environmental friendliness and non-toxicity. However, its application is greatly limited due to its square hysteresis loop, which leads to low recoverable energy storage density (Wrec). Introducing a second component into NaNbO3 to form a solid solution can enhance its energy storage properties. According to this train of thoughts, (1-x)NaNbO3-x(0.3Bi0.5Na0.5TiO3-0.7BiFeO3) [NN-x(BNT-BF)] (x=0.05, 0.1, 0.15, 0.2) ceramics were designed through substituting the A- and B- sites of NaNbO3 with Bi3+, Fe3+, and Ti4+ simultaneously in this work. The NN-x(BNT-BF) ceramics were prepared by the conventional solid-state reaction method, and their phase compositions, microstructures, dielectric and energy storage properties were systematically investigated by X-ray diffraction (XRD), Raman spectrum, scanning electron microscopy (SEM), dielectric property measurement and ferroelectric test. The results showed that with the increase of BNT-BF content, the phase composition of the NN-x(BNT-BF) ceramics gradually transformed from coexistence of orthogonal antiferroelectric P and R phases (x<0.1) to single antiferroelectric R phase (x≥0.1), and the relaxation behavior was significantly enhanced. The densification of the NN-x(BNT-BF) ceramics was remarkably improved. With the increase of BNT-BF content, the average grain size of the NN-x(BNT-BF) ceramics was firstly declined and then increased. Moreover, replacing the A- and B- sites of NaNbO3 by Bi3+, Fe3+, and Ti4+ simultaneously could disrupt its original long-range antiferroelectric ordered structure, thus optimizing energy storage performances of the ceramics. At a high breakdown field strength (Eb) of 410 kV/cm, the NN-0.2(BNT-BF) ceramic achieved Wrec of 2.54 J/cm3, and energy storage efficiency (η) of 89.24%. In addition, the NN-0.2(BNT-BF) ceramic exhibited a high temperature stability in the temperature range of 20~120 ℃. Meanwhile, large power density (PD=49 MW/cm3), high current density (CD=406 A/cm2), and ultrafast discharge rate (t0.9=35 ns) made the NN-0.2(BNT-BF) ceramic have potential applications in pulse power systems.

参考文献

[1]
Jiang, Y.; Shen, X. C.; Guo, L. M.; Bi, K.; Wang, X. H.; Li, L. T. J. Mater. Eng. 2022, 50, 96 (in Chinese).
[1]
(姜莹, 申心畅, 郭丽敏, 毕科, 王晓慧, 李龙土, 材料工程, 2022, 50, 96.)
[2]
Qu, N.; Du, H. L.; Hao, X. H. J. Mater. Chem. C 2019, 7, 7993.
[3]
Zheng, H. Y.; Pu, Y. P.; Li, L. P.; Xue, J. R.; Gao, X. Q.; Hu, Z. W.; Ren, G. P. Materials Reports. 2019, 33, 20 (in Chinese).
[3]
(郑晗煜, 蒲永平, 李来平, 薛建嵘, 高选乔, 胡忠武, 任广鹏, 材料导报, 2019, 33, 20.)
[4]
Zhou, M. X.; Liang, R. H.; Zhou, Z. Y.; Dong, X. L. J. Mater. Chem. A. 2018, 6, 17896.
[5]
Li, S. Y.; Shi, P.; Zhu, X. P.; Yang, B.; Zhang, X. X.; Kang, R. R.; Liu, Q. D.; Gao, Y. F.; Sun, H. N.; Lou, X. J. J. Mater. Sci. 2021, 56, 11922.
[6]
Zou, K. L.; Dan, Y.; Xu, H. J.; Zhang, Q. F.; Lu, Y. M.; Huang, H. T.; He, Y. B. Mater. Res. Bull. 2019, 113, 190.
[7]
Tao, O. Y.; Pu, Y. P.; Ji, J. M.; Zhou, S. Y.; Li, R. Ceram. Int. 2021, 47, 20447.
[8]
Chen, K. K.; Bai, H. R.; Yan, F.; He, X.; Liu, C. S.; Xie, S. F.; Shen, B.; Zhai, J. W. ACS Appl. Mater. Interfaces 2021, 13, 4236.
[9]
Qi, H.; Xie, A. W.; Tian, A.; Zuo, R. Z. Adv. Energy Mater. 2020, 10, 1903338.
[10]
Ma, J. Q.; Lin, Y.; Yang, H. B.; Tian, J. H. J. Alloys Compd. 2021, 868, 159206.
[11]
Chen, H. Y.; Shi, J. P.; Chen, X. L.; Sun, C. C.; Pang, F. H.; Dong, X. Y.; Zhang, H. L.; Zhou, H. F. J. Mater. Chem. A, 2021, 9, 4789.
[12]
Liu, Z. Y.; Lu, J. S.; Mao, Y. Q.; Ren, P. R.; Fan, H. Q. J. Eur. Ceram. Soc. 2018, 38, 4939.
[13]
Shimizu, H.; Guo, H. Z.; Reyes-Lillo, S. E.; Mizuno, Y.; Rabe, K. M.; Randall, C. A. Dalton Trans. 2015, 44, 10763.
[14]
Shi, R. K.; Pu, Y. P.; Wang, W.; Guo, X.; Li, J. W.; Yang, M. D.; Zhou, S. Y. J. Alloys Compd. 2020, 815, 152356.
[15]
Dong, X. Y.; Li, X.; Chen, H. Y.; Dong, Q. P.; Wang, J. M.; Wang, X.; Pan, Y.; Chen, X. L.; Zhou, H. F. J. Adv. Ceram. 2022, 11, 729.
[16]
Liu, N. T.; Liang, R. H.; Zhou, Z. Y.; Dong, X. L. J. Mater. Chem. C 2018, 6, 10211.
[17]
Neaton, J. B.; Ederer, C.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M. Phys. Rev. B 2005, 71, 014113.
[18]
Ma, J. J.; Zhang, J.; Guo, J.; Li, X. J.; Guo, S.; Huan, Y.; Wang, J.; Zhang, S. T.; Wang, Y. J. Chem. Mater. 2022, 34, 7313.
[19]
Ye, F.; Jiang, X. P.; Chen, Y. J.; Huang, X. K.; Zeng, R. F.; Chen, C.; Nie, X.; Cheng, H. J. Inorg. Mater. 2022, 37, 499 (in Chinese).
[19]
(叶芬, 江向平, 陈云婧, 黄枭坤, 曾仁芬, 陈超, 聂鑫, 成昊, 无机材料学报, 2022, 37, 499.)
[20]
Cui, S. Z.; Yang, H. P.; Sun, H. H.; Nie, K.; Wu, J. M. Acta Chim. Sinica 2016, 74, 995 (in Chinese).
[20]
(崔素珍, 杨汉培, 孙慧华, 聂坤, 吴俊明, 化学学报, 2016, 74, 995.)
[21]
Jia, Y. G.; Chen, S. J.; Shao, X.; Cheng, J.; Lin, N.; Fang, D. L.; Mao, A. Q.; Li, C. H. Acta Chim. Sinica 2023, 81, 486 (in Chinese).
[21]
(贾洋刚, 陈诗洁, 邵霞, 程婕, 林娜, 方道来, 冒爱琴, 李灿华, 化学学报, 2023, 81, 486.)
[22]
Gao, X. L.; Li, Y.; Chen, J. W.; Yuan, C.; Zeng, M.; Zhang, A. H.; Gao, X. S.; Lu, X. B.; Li, Q. L.; Liu, J. M. J. Eur. Ceram. Soc. 2019, 39, 2331.
[23]
Tian, Z. M.; Zhang, Y. S.; Yuan, S. L.; Wu, M. S.; Wang, C. H.; Ma, Z. Z.; Huo, S. X.; Duan, H. N. Mat. Sci. Eng. B 2012, 177, 7410.
[24]
Hieno, A.; Sakamoto, W.; Moriya, M.; Yogo, T. Jpn. J. Appl. Phys. 2011, 50, 09NB04.
[25]
Jiang, J.; Meng, X. J.; Li, L.; Zhang, J.; Guo, S.; Wang, J.; Hao, X. H.; Zhu, H. G.; Zhang, S. T. Chem. Eng. J. 2021, 422, 130130.
[26]
Ma, J. J.; Zhang, D. H.; Ying, F.; Li, X. J.; Li, L.; Guo, S.; Huan, Y.; Zhang, J.; Wang, J.; Zhang, S. T. ACS Appl. Mater. Interfaces 2022, 14, 19704.
[27]
Chen, J.; Qi, H.; Zuo, R. Z. ACS Appl. Mater. Interfaces 2020, 12, 32871.
[28]
Wei. K.; Duan, J. H.; Zhou, X. F.; Li, G. S.; Zhang, D.; Li, H. ACS Appl. Mater. Interfaces 2023, 15, 48354.
[29]
Dong, Q. P.; Nong, P.; Pan, Y.; Zeng, D. F.; Xu, M. Z.; Zhou, H. F.; Li, X.; Chen, X. L. J. Mater. Chem. C 2023, 11, 13120.
[30]
Chen, H. Y.; Dong, X. Y.; Wang, X.; Pan, Y.; Wang, J. M.; Deng, L.; Chen, X. L.; Dong, Q. P.; Zhang, H. L.; Zhou, H. F. Ceramics International. 2022, 48, 7723.
[31]
Pang, F. H.; Chen, X. L.; Shi, J. P.; Sun, C. C.; Chen, H. Y.; Dong, X. Y.; Zhou, H. F. ACS Sustain. Chem. Eng. 2021, 9, 4863.
[32]
Han, K.; Luo, N. N.; Chen, Z. P.; Ma, L.; Chen, X. Y.; Feng, Q.; Hu, C. Z.; Zhou, H. F.; Wei, Y. Z.; Toyohisa, F. J. Eur. Ceram. Soc. 2020, 40, 3562.
[33]
Yang.. L. T.; Kong,. X.; Cheng,. Z. X.; Zhang,. S. J. J. Mater. Res. 2021, 36, 1214.
[34]
Wang, Z. X.; Li, Z.; Zhang, J. Y.; Zhang, J.; Niu, Y. H. J. Chin. Ceram. Soc. 2023, 51, 1530 (in Chinese).
[34]
(王子瑄, 李卓, 张家勇, 张静, 牛艳辉, 硅酸盐学报, 2023, 51, 1530.)
[35]
Meng, X. J.; Yang, Z. Y.; Yuan, Y.; Tang, B.; Zhang, S. R. Chem. Eng. J. 2023, 477, 147097.
[36]
Liu, S.; Feng, W. W.; Li, J. H.; Tang, B.; Hu, C.; Zhong, Y.; He, B.; Luo, D. J. Chem. Eng. J. 2023, 470, 144086.
[37]
Shannon, R. D. J. Appl. Phys. 1993, 73, 348.
[38]
Dong, X. Y.; Li, X.; Chen, X. L.; Chen, H. Y.; Sun, C. C.; Shi, J. P.; Pang, F. H.; Zhou, H. F. J. Materiomics. 2021, 7, 629.
[39]
Cao, W. P.; Li, W. L.; Dai, X. F.; Zhang, T. D.; Sheng, J.; Hou, Y. F.; Fei, W. D. J. Eur. Ceram. Soc. 2016, 36, 593.
[40]
Shi, J. P.; Chen, X. L.; Li, X.; Sun, J.; Sun, C. C.; Pang, F. H.; Zhou, H. F. J. Mater. Chem. C 2020, 8, 3784.
[41]
Ye, J. M.; Wang, G. S.; Zhou, M. X.; Liu, N. T.; Chen, X. F.; Li, S.; Cao, F.; Dong, X. L. J. Mater. Chem. C 2019, 7, 5639.
[42]
Shi, P.; Zhu, X. P.; Lou, X. J.; Yang, B.; Guo, X. D.; He, L. Q.; Liu, Q. D.; Yang, S.; Zhang, X. X. Compos. B 2021, 215, 108815.
[43]
Zhao, Y.; Zhu, L. P.; Meng, X. J.; Li, Y.; Hao, X. H. Mater. Sci. Eng. B 2022, 282, 115773.
[44]
Chen, L.; Long, F. X.; Qi, H.; Liu, H.; Deng, S. Q.; Chen, J. Adv. Funct. Mater. 2022, 32, 2110478.
[45]
Li, D. X.; Shen, Z. Y.; Li, Z. P.; Luo, W. Q.; Song, F. S.; Wang, X. C.; Wang, Z. M.; Li, Y. M. J. Mater. Chem. C 2020, 8, 7650.
[46]
Xu, R.; Tian, J. J.; Zhu, Q. S.; Zhao, T.; Feng, Y. J.; Wei, X. Y.; Xu, Z. J. Am. Ceram. Soc. 2017, 100, 3618.
文章导航

/