具有双吸电子基团D-A型配体的Ag(I)发光配合物的合成与性能研究
收稿日期: 2024-02-21
网络出版日期: 2024-04-12
基金资助
国家自然科学基金(52073286); 国家自然科学基金(2021ZZ115); 国家自然科学基金(2021ZR132); 福建省自然科学基金(2021J011073); 福建省区域发展项目(2021H4008); 以及中国科学院科技服务网络计划(STS2023T3039)
Synthesis and Characterization of an Emissive Ag(I) Complex with a D-A Type Ligand Containing Two Electron-withdrawing Groups
Received date: 2024-02-21
Online published: 2024-04-12
Supported by
National Natural Science Foundation of China(52073286); National Natural Science Foundation of China(2021ZZ115); National Natural Science Foundation of China(2021ZR132); Natural Science Foundation of Fujian Province(2021J011073); regional development projects in Fujian Province(2021H4008); Science and Technology Service Network Initiative from the Chinese Academy of Sciences(STS2023T3039)
热活化延迟荧光(TADF)材料因其在有机发光二极管(OLED)材料领域具有巨大的应用前景, 受到了学术界的广泛关注. Ag(I)配合物的最外层电子排布为d10构型, d轨道始终处于填满状态, 不存在金属中心(MC)态, 因此不会发生MC态导致的淬灭效应, 适合用来设计开发TADF材料. 本研究中, 设计合成了一个新的D-A型配体, 9-(4'-(4,6-二苯基- 1,3,5-三嗪-2-基)-4-(3-(吡啶-2-基)-1H-吡唑-1-基)-[1,1'-联苯]-2-基)-3,6-二甲氧基-9H-咔唑(L). 该配体以3,6-二甲氧基- 9H-咔唑作为电子给体, 并含有三嗪和吡啶吡唑两个缺电子基团组成的双吸电子基团电子受体. 利用L为含氮双齿配体和双[2-(二苯基膦基)苯基]-醚(POP)为含磷双齿配体, 合成了离子型的Ag(I)配合物Ag(L)(POP)(BF4) (1). 对配体L和配合物1进行了核磁共振氢谱、碳谱、元素分析以及X射线单晶衍射分析等表征. 其中配合物1属于三斜晶系, 空间群为P-1, 晶胞参数为a=1.30213(4) nm, b=1.63383(4) nm, c=1.93108(5) nm, α=92.941(2)°, β=105.247(3)°, γ=98.591(2)°, V=3.90076(18) nm3. Ag+离子在配合物1中为四配位, 并呈现出扭曲的四面体配位结构. 室温下, 配合物1固体在紫外灯照射下会发出强烈的绿光, 光谱峰值为490 nm, 荧光寿命为23.0 ns, 延迟荧光寿命为503.9 μs, 光致发光量子效率(PLQY)为43.8%. 对配合物1的不同温度发射光谱和寿命衰减研究表明, 配合物1固体在室温下呈现出热激活延迟荧光(TADF)特性.
赵雨晴 , 梁栋 , 贾吉慧 , 余荣民 , 卢灿忠 . 具有双吸电子基团D-A型配体的Ag(I)发光配合物的合成与性能研究[J]. 化学学报, 2024 , 82(5) : 486 -492 . DOI: 10.6023/A24020058
Thermally activated delayed fluorescence (TADF) materials have attracted significant attention in the field of organic light-emitting diodes (OLEDs) due to their tremendous application potential. The outermost electronic configuration of the Ag(I) complex is d10 configuration, with d orbitals always being filled. There is no metal-centred (MC) state, therefore the quenching effect caused by the MC state does not occur. This renders it an appropriate choice for the design and development of TADF materials. In this study, we designed and synthesized a novel D-A ligand, 9-(4'-(4,6-diphenyl-1,3,5-triazin-2-yl)-4- (3-(pyridin-2-yl)-1H-pyrazole-1-yl)-[1,1'-biphenyl]-2-yl)-3,6-dimethoxy-9H-carbazole (L). The ligand employs 3,6-dimeth- oxy-9H-carbazole as the electron donor and comprises a bis-electron-donating group comprising triazine and pyridyl pyrazole as the electron acceptor. An ionic Ag(I) complex, Ag(L)(POP)(BF4) (1), was synthesised utilising L as a nitrogen-containing bidentate ligand and bis[2-(diphenylphosphino)phenyl] ether (POP) as a phosphorus-containing bidentate ligand. The ligand L and complex 1 were characterised by 1H and 13C nuclear magnetic resonance spectrometry, elemental analysis and X-ray single crystal diffraction analysis. The complex 1 belongs to the triclinic crystal system with space group P-1, with a=1.30213(4) nm, b=1.63383(4) nm, and c=1.93108(5) nm, α=92.941(2)°, β=105.247(3)°, γ=98.591(2)°, V=3.90076(18) nm3. The Ag+ ion in complex 1 is tetrahedrally coordinated with a twisted tetrahedral coordination geometry. At room temperature, complex 1 in solid form emits strong green light under UV light, with a maximum at 490 nm. The fluorescence lifetime is 23.0 ns, the thermally activated delayed fluorescence (TADF) lifetime is 503.9 μs, and the photoluminescence quantum yield (PLQY) is 43.8%. The steady-state emission spectra and time-dependent photoluminescent spectra of complex 1 at different temperatures demonstrate that complex 1 exhibits TADF characteristics at room temperature.
| [1] | Lu, J.; Pattengale, B.; Liu, Q.; Yang, S.; Shi, W.; Li, S.; Huang, J.; Zhang, J. J. Am. Chem. Soc. 2018, 140, 13719. |
| [2] | Lundberg, P.; Lindh, E. M.; Tang, S.; Edman, L. ACS Appl. Mater. Inter. 2017, 9, 28810. |
| [3] | Tang, X.; Cui, L.-S.; Li, H.-C.; Gillett, A. J.; Auras, F.; Qu, Y.-K.; Zhong, C.; Jones, S. T. E.; Jiang, Z.-Q.; Friend, R. H.; Liao, L.-S. Nature Mater. 2020, 19, 1332. |
| [4] | Hamze, R.; Peltier, J. L.; Sylvinson, D.; Jung, M.; Cardenas, J.; Haiges, R.; Soleilhavoup, M.; Jazzar, R.; Djurovich, P. I.; Bertrand, G.; Thompson, M. E. Science 2019, 363, 601. |
| [5] | Yuan, P.; Zhang, H.; Zhou, Y.; He, T.; Malola, S.; Gutiérrez-Arzaluz, L.; Li, Y.; Deng, G.; Dong, C.; Huang, R.; Song, X.; Teo, B. K.; Mohammed, O. F.; H?kkinen, H.; Bakr, O. M.; Zheng, N. Aggregate 2024, 5, e475. |
| [6] | Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234. |
| [7] | Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc. 2012, 134, 14706. |
| [8] | Leitl, M. J.; Krylova, V. A.; Djurovich, P. I.; Thompson, M. E.; Yersin, H. J. Am. Chem. Soc. 2014, 136, 16032. |
| [9] | Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326. |
| [10] | Im, Y.; Kim, M.; Cho, Y. J.; Seo, J.-A.; Yook, K. S.; Lee, J. Y. Chem. Mater. 2017, 29, 1946. |
| [11] | Cai, X.; Su, S. J. Adv. Funct. Mater. 2018, 28, 1802558. |
| [12] | Huang, W.; Einzinger, M.; Zhu, T.; Chae, H. S.; Jeon, S.; Ihn, S.-G.; Sim, M.; Kim, S.; Su, M.; Teverovskiy, G.; Wu, T.; Van Voorhis, T.; Swager, T. M.; Baldo, M. A.; Buchwald, S. L. Chem. Mater. 2018, 30, 1462. |
| [13] | Wu, T.-L.; Huang, M.-J.; Lin, C.-C.; Huang, P.-Y.; Chou, T.-Y.; Chen-Cheng, R.-W.; Lin, H.-W.; Liu, R.-S.; Cheng, C.-H. Nat. Photonics 2018, 12, 235. |
| [14] | Shi, S.; Jung, M. C.; Coburn, C.; Tadle, A.; Sylvinson, M. R. D.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2019, 141, 3576. |
| [15] | Cai, X. B.; Liang, D.; Yang, M.; Wu, X. Y.; Lu, C. Z.; Yu, R. Chem. Commun. 2022, 58, 8970. |
| [16] | Liang, D.; Jia, J.-H.; Cai, X.-B.; Zhao, Y.-Q.; Wang, Z.-Q.; Lu, C.-Z. Inorg. Chem. Front. 2022, 9, 6561. |
| [17] | Zhou, T.; Qian, Y.; Wang, H.-J.; Feng, Q.-Y.; Xie, L.-H.; Huang, W. Acta Chim. Sinica 2021, 79, 557 (in Chinese). |
| [17] | (周涛, 钱越, 王宏健, 冯全友, 解令海, 黄维, 化学学报, 2021, 79, 557.) |
| [18] | Wang, Y.-F.; Li, M.; Chen, C.-F. Acta Chim. Sinica 2023, 81, 588 (in Chinese). |
| [18] | (王银凤, 李猛, 陈传峰, 化学学报, 2023, 81, 588.) |
| [19] | Ge, F.-J.; Zhang, K.-Z.; Cao, Q.-P.; Xu, H.; Zhou, T.; Zhang, W.-H.; Ban, X.-X.; Zhang, X.-B.; Li, N.; Zhu, P. Acta Chim. Sinica 2023, 81, 1157 (in Chinese). |
| [19] | (葛凤洁, 张开志, 曹清鹏, 徐慧, 周涛, 张文浩, 班鑫鑫, 张晓波, 李娜, 朱鹏, 化学学报, 2023, 81, 1157.) |
| [20] | Liu, Z.-Y.; Rao, J.-F.; Zhu, S.-J.; Wang, B.-Y.; Yu, F.; Feng, Q.-Y.; Xie, L.-H. Acta Chim. Sinica 2023, 81, 820 (in Chinese). |
| [20] | (刘振宇, 饶俊峰, 祝守加, 王兵洋, 余帆, 冯全友, 解令海, 化学学报, 2023, 81, 820.) |
| [21] | Artem'ev, A. V.; Shafikov, M. Z.; Schinabeck, A.; Antonova, O. V.; Berezin, A. S.; Bagryanskaya, I. Y.; Plusnin, P. E.; Yersin, H. Inorg. Chem. Front. 2019, 6, 3168. |
| [22] | Sujith, S.; Nam, E. B.; Lee, J.; Lee, S. U.; Lee, M. H. Inorg. Chem. Front. 2020, 7, 3456. |
| [23] | Kim, D.; Coropceanu, V.; Bredas, J. L. J. Am. Chem. Soc. 2011, 133, 17895. |
| [24] | Kim, D.; Zhu, L.; Brédas, J.-L. Chem. Mater. 2012, 24, 2604. |
| [25] | Jia, J.-H.; Liang, D.; Yu, R.; Chen, X.-L.; Meng, L.; Chang, J.-F.; Liao, J.-Z.; Yang, M.; Li, X.-N.; Lu, C.-Z. Chem. Mater. 2019, 32, 620. |
| [26] | Yersin, H.; Czerwieniec, R.; Shafikov, M. Z.; Suleymanova, A. F. Chemphyschem 2017, 18, 3508. |
| [27] | Schinabeck, A.; Chen, J.; Kang, L.; Teng, T.; Homeier, H. H. H.; Suleymanova, A. F.; Shafikov, M. Z.; Yu, R.; Lu, C.-Z.; Yersin, H. Chem. Mater. 2019, 31, 4392. |
| [28] | Chen, J.; Teng, T.; Kang, L.; Chen, X. L.; Wu, X. Y.; Yu, R.; Lu, C. Z. Inorg. Chem. 2016, 55, 9528. |
| [29] | Volz, D.; Chen, Y.; Wallesch, M.; Liu, R.; Flechon, C.; Zink, D. M.; Friedrichs, J.; Flugge, H.; Steininger, R.; Gottlicher, J.; Heske, C.; Weinhardt, L.; Brase, S.; So, F.; Baumann, T. Adv. Mater. 2015, 27, 2538. |
| [30] | Everly, R. M.; McMillin, D. R. Photochem. Photobiol. 2008, 50, 711. |
| [31] | Hsu, C. W.; Lin, C. C.; Chung, M. W.; Chi, Y.; Lee, G. H.; Chou, P. T.; Chang, C. H.; Chen, P. Y. J. Am. Chem. Soc. 2011, 133, 12085. |
| [32] | Shafikov, M. Z.; Czerwieniec, R.; Yersin, H. Dalton Trans. 2019, 48, 2802. |
| [33] | Li, Z.; Yang, D.; Han, C.; Zhao, B.; Wang, H.; Man, Y.; Ma, P.; Chang, P.; Ma, D.; Xu, H. Angew. Chem.-Int. Ed. 2021, 60, 14846. |
| [34] | Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. |
/
| 〈 |
|
〉 |